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Introduction

The Standard Delay Format (SDF) file stores the timing data generated by
EDA tools for use at any stage in the design process. The data in the SDF
file is represented in a tool-independent way and can include

■ Delays: module path, device, interconnect, and port

■ Timing checks: setup, hold, recovery, removal, skew, width, period,
and nochange

■ Timing constraints: path, skew, period, sum, and diff

■ Timing environment: intended operating timing environment

■ Incremental and absolute delays

■ Conditional and unconditional module path delays and timing checks

■ Design/instance-specific or type/library-specific data

■ Scaling, environmental, and technology parameters

Throughout a design process, you can use several different SDF files.
Some of these files can contain pre-layout timing data.  Others can contain
path constraint or post-layout timing data.

The name of each SDF file is determined by the EDA tool.  There are no
conventions for naming SDF files.

Version 3.0 of the Standard Delay Format includes many enhancements
for the specification of the environment in which a circuit is operating with
regard to timing.  Along with existing and new constraint information, this
makes the format much more useful for communication between timing
analysis and synthesis tools.

Some new constructs and enhancements for the back-annotation of
computed timing data are also included.  For example, the “removal”
timing check bears the same relationship to a recovery check as the hold
check does to a setup check.  Note that some of the new constructs
anticipate corresponding enhancements to popular analysis tools.

Many SDF files written to the 2.1 specification will also conform to the 3.0
version (with the adjustment of theSDFVERSION entry).  However, some
significant changes in the area of constraints and the less frequently used
back-annotation constructs mean that the new format is not 100%
backward-compatible.  File readers should use theSDFVERSION entry if
they are unable to adapt to the differences automatically.  See the version
history later in this chapter for complete information about changes.

Introduction to
Version 3.0
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Introduction

OVI has developed this SDF specification to enable accurate and
unambiguous transfer of delay data between tools that require timing.All
parties utilizing the SDF should interpret and manipulate delay data
according to this specification.The specification will be provided free of
charge to all interested members of OVI.  ASIC Vendors and 3rd party tool
suppliers that desire copies of the SDF specification should request it from
the OVI headquarters.  Please direct your requests to:

Lynn Horobin
Open Verilog International
15466 Los Gatos Blvd., Suite 109-071,
Los Gatos, CA 95032

Tel: (408) 353-8899
Fax: (408) 353-8869
internet e-mail: ovi@netcom.com

Open Verilog International makes no warranties whatsoever with respect
to the completeness, accuracy, or applicability of the information in this
document to a user’s requirements.

Open Verilog International reserves the right to make changes to the
Standard Delay Format Specification at any time without notice.

Open Verilog International does not endorse any particular CAE tool that
is based on the Verilog hardware description language.

Published by OVI
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Version History

Version History

■ The keywords,USERDEF andINCLUDE , which were in version 1.0, are no
longer supported by OVI SDF 2.0.
■ Hierarchy divider character restricted to period (.) or slash (/).
■ Use ofCOND keyword with timing checks revised and
timing_check_condition restricted for correspondence with the Verilog
language.
■ CORRELATION  construct added toCELL .
■ C and C++ style comments now allowed in SDF files.
■ Alterations to all examples of theRECOVERY  timing check,  unfortunately
resulting in them beingincorrect in version 2.0 of the specification, see version
2.1, below.
■ WIDTH  andPERIOD construct descriptions corrected - width and period
timing checks are forminimum  allowable pulse width and period, not
maximum.
■ All delay constructs (IOPATH , DEVICE , PORT, INTERCONNECT  and
NETDELAY ) changed to permit negative values instead of only positive,value
changed torvalue in formal syntax descriptions involving these keywords.
■ Corrections toTIMINGCHECK  entries in Example 2 of Section 2.
■ Other minor changes to descriptive text.

■ Formal syntax description consolidated in new chapter, BNF symbolsvalue
andexp_list deleted,absvals andincvals both replaced bydel_def, some
symbols changed for more intuitive reading, other minor corrections and
reorganizations.
■ TheSDFVERSION entry in the header is now required.  Other entries in the
header are still optional, but, if present, must now contain data (i.e. “empty”
entries such as(DESIGN ) are no longer allowed).
■ The use of the wildcard instance specification restricted to cells at the ASIC
physical primitive level, no longer allowed inPATH or port_path.
■ Description ofCORRELATION  entry expanded and syntax revised to avoid
possible confusion with “min:typ:max” triples.
■ CELL  entries may now have zero or moretiming_specs (previously one or
more), allowingCELL  entries to carry aCORRELATION  entry without other
timing data.
■ The option to provide a single value or a “min:typ:max” triple has been
made available uniformly to all constructs.  However, it is now prohibited to
mix single values and triples in the same SDF file.
■ The semantics of delay values (rvalues) in anrvalue_list (formerlyrvalue)
has been defined for lists of length 1, 2, 3, 6 or 12.  Provision is made for
omitting rvalues from the ends of lists of 6 and 12.  Anyrvalue can be null.

Version 2.0 -
June, 1993

Version 2.1 -
February, 1994
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■ PATHPULSE andGLOBALPATHPULSE  changed to allow specification of
both ports of a path or neither, the latter applying to all paths across the cell.
■ Improved description of use ofport_instance specification inDEVICE
entries to apply delays to paths ending at a particular output port.
■ timing_check_condition now allows only ~ and ! operators to be applied to
scalar_ports rather than the full set ofUNARY_OPERATORs.
■ WIDTH  andPERIOD entries restricted to have only non-negative values,
formal syntax definition changed to reflect this.
■ Improved description ofRECOVERY  timing check and correction of all
examples (asynchronous control signal port reference comes before clock port
reference).
■ Description ofDIFF  entry corrected to agree with formal syntax description;
only two paths are permitted, not more.SUM andDIFF  now allow two data
values to differentiate rise and fall delays.  Since only positive values make
sense for theDIFF  constraint, this is now enforced by the syntax.
■ Improved description ofSKEWCONSTRAINT  construct.  Since only
positive values make sense for this constraint, this is now enforced by the
syntax.
■ Proposal for SDF version 3.0 revised.
■ Other extensions and changes to descriptive text.

■ The formal syntax forrvalue_list was incorrect as originally published in
that it implied a second set of parentheses around eachrvalue in the list.  The
correction consists of a revision to page 4-7 removing these extra parentheses
and improving the explanatory text.  All examples of the usage ofrvalue_list
were correct as originally published.

■ The alternative for identifying cell instances by repetition of theinstance
construct removed.  The more compact method using a singleINSTANCE
keyword followed by aPATH (using the hierarchy divider character) is now
required in all cases where a specific region of the design is to be identified.
■ The two alternatives for identifying specific ports of specific cell instances
rationalized into one method.  The syntax of the oldport_instance symbol,
using theINSTANCE  keyword and aPATH in parentheses before the port
name, has been eliminated.  The syntax ofport_path, using aPATH, the
hierarchy delimiter and the port name, has been retained.  However, to reduce
confusion between paths though the design hierarchy and circuit paths that
have timing data associated with them, the BNF symbolport_instance has
been adopted for this syntax.
■ The restriction of the use of the wildcard instance specification to cells at
the ASIC physical primitive level added in SDF 2.1 was removed.
■ CORRELATION  construct removed.
■ GLOBALPATHPULSE  keyword changed toPATHPULSEPERCENT.
■ Descriptions ofPATHPULSE andPATHPULSEPERCENT much expanded
to include an explanation of the intended analysis tool operation.

Correction to
Version 2.1 -
July, 1994

Version 3.0 -
May, 1995
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Version History

■ Pulse propagation limits may now be specified in all delay constructs using
delval anddelval_list, which extend thervalue_list of previous versions.
■ An optional symbolic name can now appear after theCOND keyword (and
the newSCOND andCCOND keywords) to stand in for the state or condition
expression to assist annotators that operate by matching named placeholders.
■ CONDELSE keyword added to allow specification of default delays over
state-dependent input-output paths.
■ NETDELAY  construct removed.
■ RETAIN  added to represent the time for which an output/bidirectional port
will retain its previous logic value after a change at a related output/
bidirectional port.
■ Negative values in timing check constructsSETUP, HOLD  and
RECOVERY  disallowed.
■ Alternative syntax forSETUPHOLD added.
■ REMOVAL  added.  This new construct is toRECOVERY  whatHOLD  is to
SETUP.
■ RECREM  added.  This is the combination ofRECOVERY  andREMOVAL
in the same way asSETUPHOLD combinesSETUP andHOLD .  This new
construct allows syntax similar to both versions ofSETUPHOLD and permits
negative limit values for the recovery or removal time subject to the constraint
that their sum be greater than zero.
■ A new timing specification construct, Timing Environment, with the
keywordTIMINGENV , added to SDF at the same level asDELAY  and
TIMINGCHECK  sections.  The constraint constructs,PATHCONSTRAINT ,
SUM, DIFF  andSKEWCONSTRAINT , moved to this section from the Timing
Check section.  Several entirely new constructs added here.
■ Optionalname added toPATHCONSTRAINT  construct to allow a symbolic
name to be associated with a path.
■ PERIODCONSTRAINT  environment construct added to specify a path
constraint value for groups of paths in a synchronous circuit.
■ WAVEFORM  environment construct added to describe input waveforms.
■ ARRIVAL  environment construct added to specify the time at which a
primary input signal is to be applied during the intended circuit operation.
■ DEPARTURE environment construct added to specify the time at which a
primary output signal is to occur during the intended circuit operation.
■ SLACK  environment construct added to specify available margin in a delay
path.
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SDF in the Design Process

By accessing an SDF file, EDA tools are assured of consistent, accurate,
and up-to-date data.  This means that EDA tools can use data created by
other tools as input to their own processes.  Sharing data in this way, layout
tools can use design constraints identified during timing analysis, and
simulation tools can use the postlayout delay data.

The EDA tools create, read (to update their design), and write to SDF files.

SDF files support hierarchical timing annotation.  A design hierarchy
might include several different ASICs (and/or cells or blocks within
ASICs), each with its own SDF file, see Figure 1.

Figure 1 Multiple SDF Files in a Hierarchical Design

SDF contains constructs for the description of computed timing data for
back-annotation and the specification of timing constraints for forward-
annotation.  There is no restriction on using both sets of constructs in the
same file.  Indeed, some design synthesis tools (such as floorplanning) may
need access to computed timing data as well as the timing constraints they
are intended to meet.

The following sections discuss the use of SDF for back- and forward-
annotation of timing information.

SDF includes constructs for describing the intended timing environment in
which a design will operate.  For example, you can specify the waveform
to be applied at clock inputs and the arrival time of primary inputs.
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Back-Annotation of Timing Data for Design Analysis

Back-Annotation of Timing Data for Design Analysis

Figure 2 shows the use of SDF in back-annotating timing data to an
analysis tool.  An advantage of this approach is that once an SDF file has
been created for a design, all analysis and verification tools can access the
same timing data, which ensures consistency.  Note, however, that
different tools may have different restrictions in the way in which they use
the data in an SDF file.  For example, static timing analysis tools may be
able to take into account path delays which have a negative value, whereas
dynamic timing simulation tools may have to interpret such negative
delays as zero.  Thus, although by using SDF the timing data used by each
tool is the same, differences in tool capabilities may nevertheless result in
small differences in analysis results.

Figure 2 SDF Files in Timing Back-Annotation

A timing calculator tool is responsible for generating the SDF file.  To do
this, it will examine the specific design for which it has been instructed to
calculate timing data.  In the figure, this is illustrated by the arrow from the
design description (netlist).  The timing calculator must locate, within the
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design, each region for which a timing model exists and calculate values
for the parameters of that timing model.  Strategies for doing this vary from
technology to technology, but an example would be the location of each
occurrence of a physical primitive from an ASIC library and the
calculation of its timing properties at its boundary (pin-to-pin timing).
Knowledge of the timing models may be obtained by accessing them
directly (not shown) or may be built into the timing calculator and/or cell
characterization data.

As the timing characteristics of ASICs are strongly influenced by
interconnect effects, the figure shows the timing calculator using
estimation rules (pre-layout) or actual interconnect data (post-layout).
Thus, SDF is suitable for both pre-layout and post-layout application.

The timing data for the design is written by the timing calculator into the
SDF file.  SDF imposes no restrictions on the precision to which the data
is represented.  Therefore, the accuracy of the data in the SDF file will be
dependent on the accuracy of the timing calculator and the information
made available to it, such as pre-layout interconnect estimation methods or
post-layout interconnect data extracted from the device topology.

The SDF file is brought into the analysis tool through an annotator.  The
job of the annotator is to match data in the SDF file with the design
description and the timing models.  Each region in the design identified in
the SDF file must be located and its timing model found.  Data in the SDF
file for this region must be applied to the appropriate parameters of the
timing model.

The annotator may be instructed to apply the data in the SDF file to a
specific region of the design, other than at the top level of the design
hierarchy.  In this case, it will search for regions identified in the SDF file
starting at this point in the hierarchy.  The file must clearly have been
prepared with this in mind, otherwise the annotator will be unable to match
what it finds in the file with the design viewed from this point.

The foregoing implies that the annotator must have access to the design
description and the timing models.  Frequently, this will be via the internal
representations maintained by the analysis tool.  The annotator will then be
a part of the tool.  As an alternative, the annotator may operate
independently of the analysis tool and convert the data in the SDF file into
a format suitable for the tool to read directly.  If such an annotator is unable
to match the SDF file to the design description and the timing models, then
the effect of inconsistencies may be unpredictable.  Also, certain
constructs of SDF cannot be supported without access to the design
description (for example, wildcard cell instance specifications).

The Annotator
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Back-Annotation of Timing Data for Design Analysis

An SDF file contains timing data for a specific design.  The contents of the
file identifies regions of the design and provides timing data that applies to
the timing properties of that region.  The analysis tool or annotator cannot
operate if the regions identified in the SDF file do not correspond exactly
with the design description.  Therefore, changes to the design generally
require the timing calculator to be re-run and a new SDF file to be written.

Of equal importance to the logic of the design is the naming of design
objects.  Even if the same cells are present and are connected in the same
way, annotation cannot operate if the names by which these cells and nets
are known differ in the SDF file and design description.  The naming of
objects must be consistent in these two places.

During annotation, inconsistencies between the SDF file and the design
description are considered errors.

An SDF file contains only timing data.  It does not contain instructions to
the analysis tool as to how to model the timing properties of the design.
The SDF keywords and constructs which surround the data in the file
describe the timing relationships between elements in the design only so
that the data can be identified by the annotator and applied to the timing
model in the correct way.  It is assumed that the timing models used by the
design are described to the analysis tool by some means other than the SDF
file.  Thus, when using SDF, it is crucial that the data in the SDF file is
consistent with the timing models.  For example, if the SDF file identifies
an occurrence of a 2-inputNAND gate ASIC library cell in the design and
states that the input-output path delay from the A input to the Y output is
0.34ns, then it is imperative that the timing model for this cell should have
an input port A, an output port Y and that the cell’s delays are described in
terms of pin-to-pin delays (as opposed, for example, to distributed delays
or a single all-inputs-to-the-output delay).

Some analysis tools and their annotators can extend the timing models in
certain ways.  Specifically, an interconnect timing model is often not
explicitly stated in the cell timing models or in the design description.  The
tool and/or annotator conspire to add this information when the design and
timing are loaded or merged in the tool.  In this case, the SDF file will
contain data that has no obvious “place to go” in the models.  Nevertheless,
the data must be consistent with the tool’s capabilities to model circuit
timing using that data.  For example, if you describe interconnect timing in
the SDF file in a point-to-point fashion, but the analysis tool can only
represent interconnect timing as delay at cell inputs, then the tool may
reject this data or perform a mapping to input delays, possibly losing
information in the process.

During annotation, inconsistencies between the SDF file and the timing
models are considered errors.
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and Design
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Consistency
Between SDF File
and Timing Models
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Forward-Annotation of Timing Constraints for Design
Synthesis

In addition to the back-annotation of timing data for analysis, SDF
supports the forward-annotation of timing constraints to design synthesis
tools.  (Here, we use the term “synthesis” in its broad sense of construction,
thus including not only logic synthesis, but floorplanning, layout and
routing.)  Timing constraints are “requirements” for the design’s overall
timing properties, often modified and broken down by previous steps in the
design process.  Figure 3 shows a typical scenario of SDF in a design
synthesis environment.

Figure 3 SDF Files in Constraint Forward-Annotation

For example, the initial requirement might be that the primary clock should
run at 50MHz.  A static timing analysis of the design might identify the
critical paths and the available “slack” time on these paths and pass
constraints for these paths to the floorplanning, layout and routing
(physical synthesis) tools so that the final design is not degraded beyond
the requirement.  Alternatively, if after layout and routing, the requirement
cannot be met, constraints for the problem paths might be constructed and
passed back to a logic synthesis tool so that it can “try again” and leave
more slack for physical synthesis.

Constraints may also be originated by an analysis tool alone.  Consider a
synchronous system in which the clock distribution system is to be
synthesized.  A static timing analysis may be able to determine the
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Forward-Annotation of Timing Constraints for Design Synthesis

maximum permissible skew over the distribution network and provide this
as a constraint to clock synthesis.  In turn, this tool may break down the
skew constraint into individual path constraints and forward this to
physical synthesis.

Note :- the term “timing constraint” is also in use to describe what in SDF
are called timing checks.  When viewed as statements of the form “this
condition must be met or the circuit won’t work”, they are indeed the same.
Perhaps the only distinction is that timing checks are applied to an
analysis tool, which is only in a position to check to see if they are met and
indicate a violation if they are not, whereas constraints are applied to a
synthesis tool, which may adapt its operation to ensure that the specified
condition is met.

In this specification, we use “timing check” to mean a test that an analysis
tool performs to make sure that a circuit, as presently constructed, will
operate reliably.  We use “timing constraint” or “constraint” to mean a
restriction on the timing properties of a design that we specify to a tool that
is going to construct or modify some aspect of the design (e.g. logic, layout
or routing).
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Timing Models Supported by SDF

The importance of the consistency of an SDF file with the timing models
has been stressed above.  SDF provides a variety of ways in which the
timing of a circuit can be described, allowing considerable flexibility in the
design of the timing models.  This section describes some modeling
methodologies supported by SDF and establishes a consistent terminology
that we will use later in describing SDF itself.

SDF supports both a pin-to-pin and a distributed delay modeling style.

A pin-to-pin modeling style is generally one in which each physical cell in
an ASIC library has its timing properties described at its boundary, i.e.
with direct reference only to the ports of the cell.  The timing model is
frequently distinct from the functional part of the model and has the
appearance of a “shell”, intercepting transitions entering and leaving the
functional model and applying appropriate delays to output transitions.
The SDFIOPATH  construct is intended to apply delay data to input-to-
output path delays across cells described in this way.  TheCOND construct
allows any path delay to be made conditional, that is, its value applies only
when the specified condition is true.  This allows for state-dependency of
path delays where the path appears more than once in the timing model
with conditions to identify the circuit state when it applies.

A distributed modeling style is generally one in which the timing
properties of the cell are embedded in the description of the cell as a
network of modeling primitives.  The primitives provided by analysis tools
such as simulators and timing analyzers usually have simple timing
capabilities built into them, such as the ability to delay an output signal
transition.  The delay properties of the cell are constructed by the careful
arrangement of modeling primitives and their delays.  The SDFDEVICE
construct is intended to apply delay data to modeling primitives in
distributed delay models.

SDF supports the specification of how short pulses propagate to the output
of a cell described using a pin-to-pin delay model.  A limit can be
established for the shortest pulse that will affect the output and a larger
limit can be established for the shortest pulse that will appear with its true
logical value, rather than appearing as a “glitch” to the unknown state.  The
SDFPATHPULSE construct allows these limits to be specified as time
values.  The SDFPATHPULSEPERCENT construct allows these limits to
be specified as percentages of the path delay.

Modeling Circuit
Delays

Modeling Output
Pulse Propagation
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Timing Models Supported by SDF

SDF supports setup, hold, recovery, removal, maximum skew, minimum
pulse width, minimum period and no-change timing checks.  Library
models can specify timing checks with respect to both external ports and
internal signals.  Negative values are permitted on timing checks where
this is meaningful, although analysis tools that cannot use negative values
may substitute a value of zero.  The SDFCOND construct allows
conditional timing checks to be specified.

SDF supports two styles of interconnect delay modeling.

The SDFINTERCONNECT  construct allows interconnect delays to be
specified on a point-to-point basis.  This is the most general method of
specifying interconnect delay.

The SDFPORT construct allows interconnect delays to be specified as
equivalent delays occurring at cell input ports.  This results in no loss of
generality for wires/nets that have only one driver.  However, for nets with
more than one driver, it will not be possible to represent the exact delay
over each driving-output-to-driven-input path using this construct.  Note
that for timing checks to operate correctly when interconnect is modeled in
this way, the timing models must be constructed to apply the delay to the
signal at input ports before they arrive at the timing checks.

SDF allows ports to be specified which are neither external connections of
an ASIC library physical primitive nor connections between levels in the
design hierarchy.  Such “internal nodes” may have no corresponding
terminal or net in the physical design but may instead be artifacts of the
way the timing and/or functional model is constructed.  For specific tools,
the use of internal nodes can increase the flexibility and accuracy of the
models.  However, because the annotator must be able to match data in the
SDF file to the models, SDF files referencing internal nodes will not be
portable to tools that do not share the same concept of internal nodes or
have models constructed without or with different internal nodes.

Modeling Timing
Checks

Modeling
Interconnect
Delays

Using “Internal”
Nodes
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SDF File Content

This chapter describes the content of an SDF file.  For each part of the file,
the purpose is discussed, the syntax is specified and an example is
presented.  A complete, formal definition of the file syntax is contained in
a separate chapter.  You may wish to refer to that chapter for precise
definitions of some of the abbreviated syntax descriptions given here.

SDF files are ASCII text files.  Every SDF file contains a header section
followed by one or more cell entries.

Syntax

delay_file ::= ( DELAYFILE sdf_header cell+ )

The header section,sdf_header, contains information relevant to the entire
file such as the design name, tool used to generate the SDF file, parameters
used to identify the design and operating conditions (see “Header Section”
on page  3).

Each cell entry,cell, identifies part of the design (a“ region” or “scope”)
and contains data for delays, timing checks, constraints and the timing
environment (see “Cell Entries” on page  8).  Acell may be a physical
primitive from the ASIC library, a modeling primitive for a specific
analysis tool or some user-created part of the design hierarchy.  In fact, a
cell may encompass the entire design.
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SDF File Content

Example

(DELAYFILE
(SDFVERSION  "3.0")
(DESIGN      "BIGCHIP")
(DATE        "March 12, 1995 09:46")
(VENDOR      "Southwestern ASIC")
(PROGRAM     "Fast program")
(VERSION     "1.2a")
(DIVIDER     /)
(VOLTAGE     5.5:5.0:4.5)
(PROCESS     "best:nom:worst")
(TEMPERATURE -40:25:125)
(TIMESCALE   100 ps)
(CELL

(CELLTYPE "BIGCHIP")
(INSTANCE top)
(DELAY

(ABSOLUTE
(INTERCONNECT mck b/c/clk (.6:.7:.9))
(INTERCONNECT d[0] b/c/d (.4:.5:.6))

)
)

)
(CELL

(CELLTYPE "AND2")
(INSTANCE top/b/d)
(DELAY

(ABSOLUTE
(IOPATH a y (1.5:2.5:3.4) (2.5:3.6:4.7))
(IOPATH b y (1.4:2.3:3.2) (2.3:3.4:4.3))

)
)

)
(CELL

(CELLTYPE "DFF")
(INSTANCE top/b/c)
(DELAY

(ABSOLUTE
(IOPATH (posedge clk) q (2:3:4) (5:6:7))
(PORT clr (2:3:4) (5:6:7))

)
)
(TIMINGCHECK

(SETUPHOLD d (posedge clk) (3:4:5) (-1:-1:-1))
(WIDTH clk (4.4:7.5:11.3))

)
)
(CELL

. . .
)

)

header
section

cell 1

cell 4
.
.
cell n

cell 2

cell 3
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Header Section

The header section of an SDF file contains information that relates to the
file as a whole.  Except for the SDF version, entries are optional, so that,
in fact, it is possible to omit most of the header section.  The syntax defines
a strict order for header entries and those that are present must follow this
order.

Most entries are for documentation purposes and do not affect the meaning
of the data in the rest of the file.  However, the SDF version, hierarchy
divider and time scale entries will, if present, change the way in which the
file is interpreted.

Syntax

sdf_header::= sdf_version design_name?date?vendor?program_name?
program_version?hierarchy_divider?voltage?process?
temperature? time_scale?

The SDF version entry identifies the version of the Standard Delay Format
specification to which the file conforms.

Syntax

sdf_version::= ( SDFVERSION QSTRING)

QSTRING is a character string, in double quotes.  The first sub-string
within QSTRING that matches one of the strings “1.0”, “2.0”, “2.1” or
“3.0”, etc., identifies the SDF version.  Other characters before and after
this sub-string are permitted and should be ignored by readers when
determining the SDF version.

Example

(SDFVERSION “OVI 3.0”)

In OVI SDF Version 2.1 and later, the SDF Version entry andQSTRING
are required.  In OVI SDF Version 1.0, the entry was required, but the
QSTRING itself could be omitted.  In OVI SDF Version 2.0, both the entry
and theQSTRING were optional.  Pre-OVI versions of SDF do not allow
an SDF Version entry.

Writers of SDF files are recommended to include the SDF version entry,
even in versions where it is optional.  If this entry is present, the file should
conform exactly to the syntax published for that SDF version.

Readers of SDF files may use the SDF version entry to adapt to the
differences in file syntax between versions.  If the file does not contain an
SDF version entry, or one is present but theQSTRING field is blank, then

SDF Version Entry
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Header Section

the operation of the reader with regard to syntax differences is undefined
and unexpected errors may result if the reader cannot automatically adapt
to the syntax of the SDF version used.

The design name entry allows you to record in the SDF file the name of the
design to which the timing data in the file applies.  It is for documentation
purposes and does not affect the meaning of the data in the file.

Syntax

design_name::= ( DESIGN QSTRING)

QSTRING is a name that identifies the design.  Although this entry is not
used by the annotator, it is recommended that, if it is included, it should be
the name given to the top level of the design description.  This is analogous
to theCELLTYPE  entry, and, in fact, the same name would be used in a
cell entry for the entire design (for example, to carry all interconnect delay
data).  It should not be the instance name of the design in a test-bench; this
would rather be used as part of the cell instance path in theINSTANCE
entries for all cells.

The date entry allows you to record in the SDF file an indication of the
currency of the data in the file.  It is for documentation purposes and does
not affect the meaning of the data in the file.

Syntax

date ::= ( DATE  QSTRING)

QSTRING is a character string, in double quotes, that represents the date
and/or time when the data in the SDF file was generated.

Example

(DATE “Friday, September 17, 1993 - 7:30 p.m.”)

The vendor entry allows you to record in the SDF file the name of the
company manufacturing the device to which the data in the file applies or
who originated the program that created the file.  It is for documentation
purposes and does not affect the meaning of the data in the file.

Syntax

vendor ::= ( VENDOR QSTRING)

QSTRING is a character string, in double quotes, containing the name of
the vendor whose tools generated the SDF file.

Example

(VENDOR “Acme Semiconductor”)

Design Name Entry

Date Entry

Vendor Entry
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The program name entry allows you to record in the SDF file the name of
the program that created the file.  It is for documentation purposes and does
not affect the meaning of the data in the file.

Syntax

program_name::= ( PROGRAM  QSTRING)

QSTRING is a character string, in double quotes, containing the name of
the program used to generate the SDF file.

Example

(PROGRAM “timcalc”)

The program version entry allows you to record in the SDF file the version
of the program that created the file.  It is for documentation purposes and
does not affect the meaning of the data in the file.

Syntax

program_version::= ( VERSION QSTRING)

QSTRING is a character string, in double quotes, containing the program
version number used to generate the SDF file.

Example

(VERSION “version 1.3”)

The hierarchy divider entry specifies which of the two permissible
characters are used in the file to separate elements of a hierarchical path.

Syntax

hierarchy_divider::= ( DIVIDER  HCHAR )

HCHAR is either a period (.), or a slash (/).  It should not be in quotes.

Example

(DIVIDER /)
 . . .

(INSTANCE a/b/c)
 . . .

In this example, the hierarchy divider is specified to be the slash (/)
character and hierarchical paths use / (rather than .) to separate elements.

If the SDF file does not contain a hierarchy divider entry then the default
hierarchy divider is the period (.).  See also the descriptions of
IDENTIFIER and PATH in “Syntax Conventions” on page 4-2.

Program Name Entry

Program Version Entry

Hierarchy Divider Entry
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The voltage entry allows you to record in the SDF file the operating
voltage or voltages for which the data in the file was computed.  It is for
documentation purposes and does not affect the meaning of the data in the
SDF file.

Syntax

voltage ::= ( VOLTAGE rtriple )
||= ( VOLTAGE  RNUMBER )

rtriple orRNUMBER indicates the operating voltage (in volts) at which the
design timing was calculated or the constraints are to apply.

Example

(VOLTAGE 5.5:5.0:4.5)

Although this entry is not used by the annotator, it should be borne in mind
that the order of delay and timing check limit values intriples is
minimum:typical:maximum.  Since minimum delays usually occur at the
highest supply voltage, it is more consistent with the use oftriples
elsewhere in the file if the highest voltage is first in the voltage entry and
the lowest voltage last.

The process entry allows you to record in the SDF file the process factor
for which the data in the file was computed.  It is for documentation
purposes and does not affect the meaning of the data in the file.

Syntax

process ::= ( PROCESS QSTRING)

QSTRING is a character string, in double quotes, which specifies the
process operating envelope.

Example

(PROCESS “best=0.65:nom=1.0:worst=1.8”)

The temperature entry allows you to record in the SDF file the operating
temperature for which the data in the file was computed.  It is for
documentation purposes and does not affect the meaning of the data in the
file.

Syntax

temperature::= ( TEMPERATURE rtriple )
||= ( TEMPERATURE  RNUMBER )

rtriple orRNUMBER indicates the operating ambient temperature(s) of the
design in degrees Celsius (centigrade).

Voltage Entry

Process Entry

Temperature Entry
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Example

(TEMPERATURE -25.0:25.0:85.0)

The timescale entry allows you to specify the units which you are using for
all time values in the SDF file.

Syntax

time_scale::= ( TIMESCALE  TSVALUE )

TSVALUE is a number followed by a unit.  The number can be 1, 10, 100,
1.0, 10.0 or 100.0.  The unit can be us, ns or ps representing microseconds,
nanoseconds and picoseconds, respectively.  A space may optionally
separate the number and the unit.TSVALUE should not be in quotes.

Example

(TIMESCALE 100 ps)
 . . .

(IOPATH (posedge clk) q (2:3:4) (5:6:7))
 . . .

This example indicates that all time values in the file are to be multiplied
by 100 picoseconds.  Thus, the values supplied in theIOPATH  entry are
(0.2ns:0.3ns:0.4ns) and (0.5ns:0.6ns:0.7ns).

If the SDF file does not contain a timescale entry then all time values in the
file will be assumed to be in nanoseconds.  This has the same effect as a
timescale entry of 1ns.

Timescale Entry
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Cell Entries

A cell entry identifies a particular “region” or “scope” within a design and
contains timing data to be applied there.  For example, a cell entry might
identify an unique occurrence of an ASIC physical primitive, such as a 2-
inputNAND gate, in the design and provide values for its timing properties,
such as the input-to-output path delays.  As well as identifying such
design-specific regions, cell entries can identify all occurrences of a
particular ASIC library physical primitive, such as a certain type of gate or
flip-flop.  Data is applied to all such library-specific regions in the design.

Syntax

cell ::= ( CELL celltype cell_instance timing_spec* )

Thecelltype andcell_instance fields identify a region of the design.  The
timing_spec field contains the timing data.  These will be discussed in
detail below.

Example

(CELL
(CELLTYPE “DFF”)
(INSTANCE a/b/c)
(DELAY

(ABSOLUTE
(IOPATH (posedge clk) q (2:3:4) (5:6:7) )

)
)

)

An SDF file may contain any number of cell entries (other than zero).  The
order of the cell entries is significant only if they have overlapping effect,
in other words, if data from two different cell entries applies to the same
timing property in the design.  In this situation, the cell entries are
processed strictly from the beginning of the file towards the end and the
data they contain is applied in sequence to whatever region is appropriate
to that cell entry.  Where data is applied to a timing property previously
referenced by the same SDF file, the new data will be applied over the old
and the final value will be the cumulative effect, whether the data is applied
as a replacement for the old value (absolute delays and timing checks) or
is added to it (incremental delays).

TheCELLTYPE  entry indicates the name of the cell.

Syntax

celltype ::= ( CELLTYPE  QSTRING)

Cell Type Entry
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QSTRING is a character string, in double quotes.  If the region of the design
identified by this cell entry is an occurrence of a physical primitive from
an ASIC library, thenQSTRING should be the name by which the cell is
known in the library.

Example

(CELLTYPE “DFF”)

In this example, the cell entry identifies an occurrence of a cell which has
the name “DFF” (perhaps a D-type flip-flop).

If the cell entry identifies a region of the design which is a user-created
level in the hierarchy, or, for example, the very top level, thenQSTRING
should be the user-created name for that part of the design.

Example

(CELLTYPE “TOP”)

In this example, the cell entry identifies a user-created design block which
the user has named “TOP”.

If the cell entry identifies a modeling primitive, in other words something
that is not part of the physical design but is part of the implementation of a
model in a particular analysis tool, thenQSTRING should be the name by
which the modeling primitive is known in that tool.

Example

(CELLTYPE “buf”)

In this example, the cell entry identifies a “buf” modeling primitive in an
analysis tool, perhaps a buf “gate” in a Verilog model.

The cell instance entry identifies the region or scope of the design for
which the cell entry contains timing data.  The name by which this region
is known in the design must be consistent with theCELLTYPE  entry for
the cell.  If the annotator locates the region and finds that its name does not
match theCELLTYPE  entry, it should indicate an error.

Syntax

cell_instance::= ( INSTANCE PATH?)
||= ( INSTANCE WILDCARD )

WILDCARD ::= * // the asterisk character

The first form of the cell instance entry identifies an unique occurrence in
the design of the region named in the cell type entry.  If, for example, the
cell is a physical primitive from an ASIC library, then a single occurrence
of that cell on the chip will be identified.  To do this, the cell instance entry

Cell Instance Entry
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provides a complete path through the design hierarchy to the cell or region
of interest.

The hierarchical path must start at the level in the design at which the
annotator will be instructed to apply the SDF file.  Frequently, this is the
topmost level.  The path is extended down through the hierarchy by adding
further levels toPATH.

Example

(CELL
(CELLTYPE "DFF")
(INSTANCE a1.b1.c1)
 . . .

)

In the above example, the complete hierarchical path is specified as
a1.b1.c1  following theINSTANCE  keyword.  The region identified is
cell/blockc1  within blockb1, which is in turn within blocka1.  The SDF
file must be applied at the level containinga1.  The period character
separates levels or elements of the path.  The example assumes that the
hierarchy divider entry in the SDF header specified the hierarchy divider
as the period character or, since period is the default, the entry was absent.

The timing data in the timing specifications of this cell entry apply only to
the identified region of the design.  If you do not specifyPATH, i.e. you
leave it blank, the default is the region (hierarchical level) in the design at
which the annotator is instructed to apply the SDF file (see “The
Annotator” page 3 in chapter 2).  This can be useful for gathering all
interconnect information into a top-level cell entry.

The second form of the cell instance entry can be used to associate timing
data with all occurrences of the specified cell type.  Instead of a
hierarchical path, specify the wildcard character (*) after theINSTANCE
keyword, as shown below.

Example

(CELL
(CELLTYPE "DFF")
(INSTANCE *)
 . . .

)

The effect of this cell instance entry will be to apply the timing data in this
cell entry to all occurrences of the cell specified in the cell type entry.  In
this particular example, every DFF cell will receive the timing data.  Note,
however, that only cells contained within the region to which the annotator
is instructed to apply the SDF file will be affected.
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Cell entries using the wildcard cell instance specification are processed in
sequence just like any other cell entry.  No special action is taken to
consolidate data in this cell entry with cell entries with the same cell type
earlier or later in the file.

Each cell entry in the SDF file includes zero or more timing specifications
which contain the actual timing data associated with that cell entry.  There
are three types of timing specifications that are identified by theDELAY ,
TIMINGCHECK , andTIMINGENV  keywords.

Syntax

timing_spec::= del_spec
||= tc_spec
||= te_spec

del_spec::= ( DELAY deltype+ )

tc_spec ::= ( TIMINGCHECK tchk_def+ )

te_spec::= ( TIMINGENV te_def+ )

TheDELAY  keyword introduces delay entries which contain delay data
and narrow-pulse propagation data for back-annotation.

Delay entries are described in the following section.

TheTIMINGCHECK keyword introduces timing check entries which
contain timing check limit data for back-annotation.

Timing check entries are described in “Timing Check Entries” on page  26.

TheTIMINGENV keyword introduces timing environment entries which
contain timing environment and constraint data for forward-annotation.

Timing environment entries are described in “Timing Environment
Entries” on page  36.

Any number of delay entries, timing check entries and timing environment
entries may be contained in a cell entry and they can occur in any order.
However, it is preferable, for efficiency reasons, to put all delay and pulse
propagation data in a single delay entry, all timing check data in a single
timing check entry and all timing environment and constraint data in a
single timing environment entry for each cell.

Timing Specifications
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Timing specifications that start with theDELAY  keyword associate delay
values with input-to-output paths, input ports, interconnects, and device
outputs.  They can also provide narrow-pulse propagation data for input-
to-output paths.

Syntax

del_spec ::= ( DELAY deltype+ )

Any number ofdeltype entries may appear in adel_spec entry.  Each
deltype will be aPATHPULSE or PATHPULSEPERCENT entry,
specifying how pulses will propagate across paths in this cell, or
ABSOLUTE  or INCREMENT  delay definition entries, containing delay
values to be applied to the region identified by the cell.

Syntax

deltype ::= ( PATHPULSE input_output_path?value value? )
||= ( PATHPULSEPERCENT input_ouput_path?value value? )
||= ( ABSOLUTE del_def+ )
||= ( INCREMENT del_def+ )

The following sections describe thedeltype entries.

ThePATHPULSE entry represents narrow-pulse propagation limits
associated with a legal path between an input port and an output port of a
device.  These limits determine whether a pulse of a certain width can pass
through the device and appear at the output.

Syntax

( PATHPULSE input_output_path?value value? )

input_output_path::= port_instance port_instance

The firstport_instance of input_output_path is an input or a bidirectional
port.

The secondport_instance of input_ouput_path is an output or a
bidirectional port.

If input_output_path is omitted, then the data supplied refers to all input-
to-output paths in the region identified by the cell entry.  The annotator
must locate all paths that are able to model narrow-pulse propagation in the
applicable timing model and apply the supplied data.

The firstvalue, in time units, is the pulse rejection limit.  This limit defines
the narrowest pulse that can appear at the output port of the specified path.
Any narrower pulse does not appear at the output.

PATHPULSE

pulse rejection limit

limitlimit



Delay Entries

May 1995 3-13

The secondvalue, in time units, is the X limit.  This limit defines the
minimum pulse width necessary to drive the output of the specified path to
a known state; a narrower pulse causes the output to enter the unknown (X)
state or is rejected (if smaller than the pulse rejection limit).  Note that the
X limit must be greater than the pulse rejection limit to carry any
significance.

If you specify only onevalue, both limits are set to that value.  In all cases
value can be either a single number or atriple, but must not be negative.

Example

(INSTANCE x)
(DELAY

(PATHPULSE i1 o1 (13) (21))
)

In this example of a simple buffer cell, the pulse rejection limit is specified
as 13 time units and the X limit is specified as 21 time units.  It is assumed
that the high-to-low and low-to-high delays fromi1  to o1 are the same.
The first pulse, being shorter than 13, is rejected.  The second pulse, being
at least 13, but shorter than 21, appears at the output as an X.  The third
pulse, being at least 21, is passed to the output.

When narrow pulses arrive at an output due to changes at different inputs
(rather than two changes at the same input, as in the above example), the
two paths from the inputs to the output may have different limits.  The
assumption made in SDF is that the analysis tool will use the data for the
path that terminated the pulse to control the pulse’s appearance at the
output.

Example

(INSTANCE x)
(DELAY

(ABSOLUTE
(IOPATH a y (45) (37))
(IOPATH b y (43) (35))

)
(PATHPULSE a y (13) (24))
(PATHPULSE b y (15) (21))

)

This much more complex example is for a 2-input AND gate where both
inputs are high for a short period of time as one goes high just before the
other goes low.  Because of differences in the path delays froma to y and
from b to y, the pulse that arrives at the output is 10 time units shorter than
the overlap of the high states ata andb.  The path fromb to y is the one
that caused the pulse to terminate.  The analysis tool should reject this

X limit

limitlimit

i1

o1

Example - buffer

≥21

13 - 21

<13

i1

o1

i1

o1

a

Example - 2-input AND

45

35

b

y
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pulse if it is shorter than 15 and change the pulse to the X state if it is at
least 15 but shorter than 21.

Note that the order in which the inputs changed is of no consequence; pulse
propagation is controlled by the data associated with the path through
which the transition propagates that ends the output pulse.

If a path has not been given data for its pulse rejection or X limits, then the
analysis tool assumes a pulse rejection limit and an X limit equal to the
path delay.  Thus, if this path terminates a narrow pulse, the pulse will be
rejected if it is shorter than the path delay or otherwise passed.

ThePATHPULSEPERCENT entry is the same asPATHPULSE but the
values are expressed as a percentage (%) of the cell path delay from the
input to the output.

Syntax

( PATHPULSEPERCENT input_output_path?value value? )

Neithervalue should be greater than 100.0.  To have any effect, the second
value (X limit) must be greater than the firstvalue (pulse rejection limit).

Example

(INSTANCE x)
(DELAY

(ABSOLUTE
(IOPATH a y (45) (37))

)
(PATHPULSEPERCENT a y (25) (35))

)

In this example, the pulse rejection limit is specified as 25% of the delay
time froma to y and the X limit is specified as 35% of this delay.  If more
than onedelval is specified in thedelval_list of anIOPATH  entry, the
analysis tool selects that corresponding to the transition than ended the
pulse.  So, for a high-going output pulse, which ends with a high-to-low
transition, the percentages are applied to the high-to-low delay of the path.
In the above example, where the high-to-low delay is 37, the pulse
rejection limit is 25% of 37 and the X limit is 35% of 37.  The data used
for pulse control comes from the path that caused the pulse to terminate (in
the same way as for thePATHPULSE construct).

Note that if the analysis tool is able to model narrow-pulse propagation
with different limits for each output transition, the tool can pre-compute
the limit values from the percentages and path delay values.  The
annotator, however, cannot do this as new values for path delays may be
supplied after thePATHPULSEPERCENT entry is processed.

PATHPULSEPERCENT
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TheABSOLUTE  keyword introduces delay data that replaces existing
delay values in the design during annotation.

Syntax

( ABSOLUTE del_def+ )

The delay definition entries,del_def, contain the actual data and describe
where it belongs in the design.

Example

(CELL (CELLTYPE "DFF")
(INSTANCE a.b.c)
(DELAY

(ABSOLUTE
(IOPATH (posedge clk) q (22:28:33) (25:30:37))
(PORT clr (32:39:49) (35:41:47))

)
)

)

Negative delay values can be specified for absolute delays to
accommodate certain styles of ASIC cell characterization.  However, note
that not all analysis tools will be able to make sense of negative delays and
some may set them to zero.

TheINCREMENT  keyword introduces delay data that is added to existing
delay values in the design during annotation.

Syntax

( INCREMENT del_def+ )

The delay definition entries,del_def, contain the actual data and describe
where it belongs in the design.  The same delay definition constructs are
used for increment and absolute delays.

Example

(CELL (CELLTYPE "DFF")
(INSTANCE a.b.c)
(DELAY

(INCREMENT
(IOPATH (posedge clk) q (-4::2) (-7::5))
(PORT clr (2:3:4) (5:6:7))

)
)

)

Negative delay values can be specified for increment delays, in which case,
of course, the value existing in the design will be reduced.  If any negative

ABSOLUTE Delays

INCREMENT Delays
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increment results in negative delays, note that not all analysis tools will be
able to make sense of negative delays and may set them to zero.

Both absolute and increment delays are described by the same group of
delay definition constructs.

Syntax

del_def ::= ( IOPATH port_spec port_instance
( RETAIN delval_list)* delval_list )

||= ( COND QSTRING?conditional_port_expr
( IOPATH port_spec port_instance
( RETAIN delval_list)* delval_list ) )

||= ( CONDELSE
( IOPATH port_spec port_instance
( RETAIN delval_list)* delval_list ) )

||= ( PORT port_instance delval_list)
||= ( INTERCONNECT port_instance port_instance delval_list)
||= ( DEVICE port_instance?delval_list)

In the syntax descriptions above, you will see that each construct uses
delval_list to specify the operating values to be applied.  The section “Data
Values” on page 4-7 provides a formal definition ofdelval_list along with
related syntax constructs.  However, here we discussdelval_list in the
context of specifying delay and pulse control data for the various delay
constructs in SDF.

The delay data in each delay definition entry is specified in a list ofdelvals.

Syntax

delval_list ::= delval
||= delval delval
||= delval delval delval
||= delval delval delval delval delval?delval?
||= delval delval delval delval delval delval

delval delval?delval?delval?delval?delval?

The number ofdelvals in thedelval_list can be one, two, three, six or
twelve.  Note, however, that the amount of data you include in a delay
definition entry must be consistent with the analysis tool’s ability to model
that kind of delay.  For example, if the modeling primitives of a particular
tool can accept only three delay values, perhaps rising, falling and “Z”
transitions, you should not attempt to annotate different values for0→1 and
Z→1 transitions or for1→Z and0→Z transitions.  It is recommended that
in such situations annotators combine the information given in some
documented manner and issue a warning.

The following paragraphs define the semantics ofdelval_lists of various
lengths.

Delay Definition
Entries

Specifying Delay Values
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If twelve delvals are specified indelval_list, then each corresponds, in
sequence, to the delay value applicable when the port (forIOPATH  and
INTERCONNECT , the output port) makes the following transitions:

0→1, 1→0, 0→Z, Z→1, 1→Z, Z→0, 0→X, X→1, 1→X, X→0, X→Z, Z→X

If fewer than twelvedelvals are specified indelval_list, then the table
below shows how the delays for each transition of the port are found from
the values given.

If only two delvals are specified, the first (“rising”) is denoted in the table
by 01 and the second (“falling”) by 10.

If threedelvals are specified, the first and second are denoted as before and
the third, the “Z” transition value, by−Z.

If six delvals are specified, they are denoted, in sequence, by 01, 10, 0Z,
Z1, 1Z and Z0.

If a singledelval is specified, it applies to all twelve possible transitions.
This is not shown in the table.

In adelval_list, anydelvals can be null, that is, the parentheses enclosing
theRNUMBER or rtriple are empty (see “Data Values” on page 4-7).  The
meaning of this is the same as missing numbers in anrtriple: no data is
supplied and values should not be changed by the annotator.  Such null
delvals act as “placeholders” to allow you to specifydelvals further down
the list.

Example

(IOPATH i3 o1 () () (2:4:5) (4:5:6) (2:4:5) (4:5:6))

In this example,0→1 and1→0 delay values are not specified and might not
even be present in the timing model.  Adelval_list consisting of nothing
but nulldelvals is permitted by the syntax and has no effect.

0→1
1→0
0→Z
Z→1
1→Z
Z→0
0→X
X→1
1→X
X→0
X→Z
Z→X

01
10
−Z
01
−Z
10

min(01,−Z)
01

min(10,−Z)
10
−Z

min(01,10)

01
10
01
01
10
10
01
01
10
10

max(01,10)
min(01,10)

01
10
0Z
Z1
1Z
Z0

min(01,0Z)
max(01,Z1)
min(10,1Z)
max(10,Z0)
max(0Z,1Z)
min(Z0,Z1)

Transition 2 3 6
Number of delvals in delval_list
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In delval_lists of length six and twelve, it is permissible to omit trailing
null delvals.  Thus, a list of fourdelvals, for example, provides data for the
0→1, 1→0, 0→Z andZ→1 transitions, but not for the1→Z, Z→0 transitions.
Note that omitting threedelvals is going too far as a mapping is defined
above for andelval_list of threedelvals onto all six transitions.

Eachdelval is either anrvalue or a group of two or threervalues enclosed
in parentheses.

Syntax

delval ::= rvalue
||= ( rvalue rvalue)
||= ( rvalue rvalue rvalue)

When a singlervalue is used, it specifies the delay value.  When two
rvalues in parentheses are used, the firstrvalue specifies the delay, as if a
singlervalue were given.  The second specifies both the pulse rejection
limit, or “r-limit”, associated with this delay, and the X-limit, or “e-limit”.
When threervaluesare used, the first specifies the delay, the second
specifies the pulse rejection limit, or “r-limit”, and the third specifies the
X-limit, or “e-limit”.  This allows pulse control data to be associated in a
uniform way with all types of delays in SDF.  Note that since anyrvalue
can be an empty pair of parentheses, each type of delay data can be
annotated or omitted as the need arises.

Eachrvalue is either a singleRNUMBER or anrtriple, containing three
RNUMBERs separated by colons, in parentheses.

Syntax

rvalue ::= ( RNUMBER?)
||= ( rtriple? )

The use of singleRNUMBERs andrtriples should not be mixed in the same
SDF file.  All RNUMBERs can have negative, zero or positive values.

The use of triples in SDF allows you to carry three sets of data in the same
file.  Each number in the triple is an alternative value for the data and is
typically selected from the triple by the annotator or analysis tool on an
instruction from the user.  The prevailing use of the three numbers is to
represent minimum, typical and maximum values computed at three
process/operating conditions for the entire design.  Any one or any two
(but not all three) of the numbers in a triple may be omitted if the
separating colons are left in place.  This indicates that no value has been
computed for that data, and the annotator should not make any changes if
that number is selected from the triple.  For absolute delays, this isnot the
same as entering a value of 0.0.

The following sections describe delay definition entries.
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The IOPATH entry represents the delays on a legal path from an input/
bidirectional port to an output/bidirectional port of a device. Each delay
value is associated with a unique input port/output port pair.

Syntax

( IOPATH port_spec port_instance delval_list)

port_spec is an input or a bidirectional port and can have an edge identifier.

port_instance is an output or a bidirectional port.  It cannot have an edge
identifier.  Delay data for the different transitions at the path output port
are conveyed by supplying an ordered list of values as described above.

delval_list is theIOPATH  delay data fromport_spec to port_instance.

If the timing model includes conditions (state dependency) for the path
delay between the two specified ports, the specified delval is still applied.
If the model includes more than one delay path, each distinguished by its
conditions, then the data applies to all of them.  This has the same effect as
specifying all paths (using theCOND or CONDELSE keyword with
IOPATH  as described below) with the sameIOPATH  delaydelval_list.

Example

(INSTANCE x.y.z)
(DELAY

(ABSOLUTE
(IOPATH (posedge i1) o1 (2:3:4) (4:5:6))
(IOPATH i2 o1 (2:4:5) (5:6:7))
(IOPATH i3 o1 () () (2:4:5) (4:5:6) (2:4:5) (4:5:6))

)
)

TheCOND keyword allows the specification of conditional (state-
dependent) input-to-output path delays.

Syntax

( COND QSTRING?conditional_port_expr
( IOPATH port_spec port_instance delval_list) )

QSTRING is an optional symbolic name that can stand in for the expression
itself for annotators that operate by matching named placeholders in the
model to SDF constructs.  See “Condition Labels”, below, for a full
explanation.

conditional_port_expr is the description of the state dependency of the
path delay.  The syntax ofconditional_port_expr is shown in “Conditions
for Path Delays” on page 4-9.  The perceptive reader will notice that this
expression evaluates to a logical signal, rather than a boolean.  The intent
is that the analysis tool should treat a logical zero asFALSE and any other

Input/Output Path Delays

i1

i3

o1

i2
o2

x.y.z

Conditional Path Delays
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logical value (1, X or Z) asTRUE and that a particular conditional path
delay in the timing model is used only if the condition isTRUE.

port_spec, port_instance anddelval_list have exactly the same meaning as
in IOPATH  entries without theCOND keyword as described above, except
that the annotator must locate a path delay with a condition matching the
one specified and apply the data only to that.  Other path delays from the
same input port to the same output port but with different conditions in the
timing model will not receive the data.  Annotators may differ in their
capabilities to match a condition in SDF to conditions in the timing model.
Where the analysis tool uses the same syntax as SDF (derived from the
Verilog language), the annotator may require an exact character-for-
character match in the string representations of the conditions.

Example

(INSTANCE x)
(DELAY

(ABSOLUTE
(COND b  (IOPATH a y (0.21) (0.54) ) )
(COND ~b (IOPATH a y (0.27) (0.34) ) )
(COND a  (IOPATH b y (0.42) (0.44) ) )
(COND ~a (IOPATH b y (0.37) (0.45) ) )

)
)

TheCONDELSE keyword allows the specification of default delays for
conditional paths.  The default delay is the delay that will be in force if,
during the simulation or analysis, none of the conditions specified for the
path in the model areTRUE but a signal must still be propagated over the
path.

Syntax

( CONDELSE ( IOPATH port_spec port_instance delval_list) )

This construct should be used only where the cell timing model includes
an explicit mechanism for providing default delays.  The annotator should
match this SDF construct to such a mechanism in the model.  It should not
attempt to locate conditions for the path which have not been specified in
COND constructs.

Annotators may operate by mapping constructs in the SDF file into
symbolic names, locating placeholders with those names in the models and
applying values from the SDF file to the variables associated with those
placeholders.  (An example of this is the annotator for VITAL models in a
VHDL simulator.)  To ease the problem of mapping aconditional_port_expr
construct (or thetiming_check_condition construct in timing checks, later)
into symbolic names, these can optionally be preceded by aQSTRING.

a
b

y

x

Condition Labels
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Clearly, for a tool that uses a name mapping annotation scheme, models
must be constructed so as to contain the correct placeholders.  Therefore,
the mapping algorithm of the tool’s annotator must be clearly documented
and available to users.  The description of the mapping must include the
way in which theQSTRING is used in constructing the name.  For example,
it may be appended to a name constructed from other information in the
SDF file such as the type of construct, port names, etc.  The description
should also explain what will happen if theQSTRING is absent in a
conditional construct and what will happen in certain timing checks where
two QSTRINGs are possible.

The intent of SDF is that theQSTRING should stand in place of the
conditional_port_expr or timing_check_condition in constructing unique
placeholder names for each state or condition in which a timing property
might have a different annotated value.

TheRETAIN entry represents the time for which an output/bidirectional
port will retain its previous logic value after a change at a related input/
bidirectional port.  This is commonly used on paths from the address or
select inputs to the data outputs of memory and register file circuits.

Syntax

( IOPATH port_spec port_instance
     ( RETAIN delval_list)* delval_list)
( COND QSTRING?conditional_port_expr
      ( IOPATH port_spec port_instance( RETAIN delval_list)* delval_list) )
( CONDELSE
      ( IOPATH port_spec port_instance( RETAIN delval_list)* delval_list) )

port_spec is an input or a bidirectional port and can have an edge identifier.

port_instance is an output or a bidirectional port.  It cannot have an edge
identifier.  Delay data for the different transitions at the path output port
are conveyed by supplying an ordered list of values as described above in
“Specifying Delay Values” on page  16.

delval_list is the retain time data fromport_spec to port_instance.

This construct should be used only where the cell timing model includes
an explicit mechanism for providing retain times.  The annotator should
match this SDF construct to such a mechanism in the model.

The delays indelval_list for consecutiveRETAIN  statements must be
strictly monotonically increasing.

Example

(IOPATH addr[13:0] do[7:0]

(RETAIN (4:5:7) (5:6:9))

Output Retain Delays

addr

do

retain time

retain time

IOPATH delay



3-22 Using the Standard Delay Format

Delay Entries

In this example, the retain time of the busdo[7:0]  with respect to changes
on the busaddr[7:0]  is described.  It is assumed that the model for this
cell contains path delays fromaddr  to do and also a modeling construct to
receive the retain times written so that after the retain time,do goes to the
X state.  The firstdelval, (4:5:7) , is the “rising” time and will be used for
do going from low to X.  The seconddelval, (5:6:9) , is the “falling” time
and will be used fordo going from high to X.

As with IOPATH  entries,RETAIN  entries can be made conditional or state
dependent by the use of theCOND andCONDELSE keywords.

ThePORT entry is for the specification of interconnect delays (actual or
estimated) that are modeled as delay at input ports.  The start point for the
delay path (the driving output port) is not specified.

Syntax

( PORT port_instance delval_list)

port_instance is an input or bidirectional port.

delval_list is thePORT delay of theport_instance.

Example

(INSTANCE c)
(DELAY

(ABSOLUTE
(PORT r1.a (0.01:0.02:0.03))
(PORT r2.a (0.03:0.04:0.05))

)
)

Analysis tools must apply delay values obtained from SDFPORT entries
before timing checks are applied.  Thus, this construct models delay in the
physical interconnect between the driver and the driven cell port.

TheINTERCONNECT  entry is for the specification of interconnect delays
(actual or estimated) that are modeled independently for each driver-to-
driven path.  Both start and end points for the delay path are specified.

Syntax

( INTERCONNECT port_instance port_instance delval_list)

The firstport_instance is an output or bidirectional port.

The secondport_instance is an input or bidirectional port.

delval_list is theINTERCONNECT  delay between the output and input
ports.

Port Delays
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Example

(INSTANCE top)
(DELAY

(ABSOLUTE
(INTERCONNECT  d1.y   c.r1.a (0.01:0.02:0.03))
(INTERCONNECT  d1.y   c.r2.a (0.03:0.04:0.05))
(INTERCONNECT  d1.y   r3.a   (0.05:0.06:0.07))
(INTERCONNECT  b.d2.y c.r1.a (0.04:0.05:0.06))
(INTERCONNECT  b.d2.y c.r2.a (0.02:0.03:0.04))
(INTERCONNECT  b.d2.y r3.a   (0.02:0.03:0.04))

)
)

Although INTERCONNECT  entries are the most general way in which
interconnect delays can be expressed, some analysis tools may not be able
to model independent delay values over each driver-to-driven path on a net
with more than one driver.  Such tools may mapINTERCONNECT  entries
into equivalent input port delays (such as would directly arise fromPORT
entries), sometimes losing information in the process.  Even tools which
can model independent delays over each path may do so less efficiently
than input port delays.  Writers of SDF files should bear this in mind when
choosing whether to usePORT entries orINTERCONNECT  entries or a
combination of both to model interconnect delay.

TheDEVICE  entry represents the delay of all paths through a cell to the
specified output port.  This construct is intended primarily for use with
distributed timing models where the cell to which it is applied is a
modeling primitive.  If it is used at a higher level in the hierarchy, then the
effect is to apply the delay data to all input-to-output paths across the cell
that terminate at the specified port.

Syntax

( DEVICE port_instance?delval_list)

port_instance is optional and, if present, specifies the output port to which
the delay data is to be applied.  If a cell has more than one output, you can
therefore include severalDEVICE  entries in a singleCELL  entry, each
indicating the desired output port usingport_instance, and attach different
delay data to each output.  Ifport_instance is omitted, all paths to all output
ports of the region identified in the cell entry receive the same delay data.

delval_list is the delay data.  The number oftriples indelval_list must
correspond to the capabilities of the modeling primitives of the target
analysis tool.  For example, Verilog “gates” can accept one, two, or in
some cases, three delay values, but never six or twelve.
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Example

(CELL
(CELLTYPE “buf”)
(INSTANCE rs1.nand1.bufa)
(DELAY

(ABSOLUTE
(DEVICE (1:3:8) (4:5:7))

)
)

)
(CELL

(CELLTYPE “buf”)
(INSTANCE rs1.nand1.bufb)
(DELAY

(ABSOLUTE
(DEVICE (2:4:9) (6:8:12))

)
)

)

In this example, a 2-inputNAND gate model,nan2 , is constructed in a
distributed delay style from two buffer primitives,bufa  andbufb , and a
NAND gate primitive,nand .  Two suchNAND gates,nand1  andnand2 , are
instantiated to create a design for an RS latch.  This is then instantiated in
a higher level of the design asrs1 .  The SDF file demonstrates the
annotation of delays to thea-to-y andb-to-y paths through the topNAND

gate.  The first of these defines the input-to-output path delay fromsb  to q

of the RS latch; the second contributes to therb  to q delay.  The delay on
bufa  also contributes to thesb -to-qb delay.

Example

(CELL
(CELLTYPE “rslatch“)
(INSTANCE rs1)
(DELAY

(ABSOLUTE
(DEVICE q (1:3:8) (4:5:7))
(DEVICE qb (2:4:9) (6:8:12))

)
)

)

In this example, the same RS latch is described in a pin-to-pin modeling
style.  Twonand  gate primitives are connected to form the functional part
of the model and all timing information is described separately in a timing
model of whatever form the analysis tool requires.  Typically, this timing
model would specify input-to-output delay paths fromsb  to q, rb  to q, sb
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to qb andrb  to qb.  The above excerpt from an SDF file annotates values
for all paths to the q and qb outputs.  It will have exactly the same effect as
the following:

(CELL
(CELLTYPE “rslatch“)
(INSTANCE rs1)
(DELAY

(ABSOLUTE
(IOPATH sb q (1:3:8) (4:5:7))
(IOPATH rb q (1:3:8) (4:5:7))
(IOPATH sb qb (2:4:9) (6:8:12))
(IOPATH rb qb (2:4:9) (6:8:12))

)
)

)
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Timing specifications that start with theTIMINGCHECK  keyword
associate timing check limit values with specific cell instances.

Syntax

tc_spec ::= ( TIMINGCHECK tchk_def+ )

Any number oftchk_def entries may appear in atc_spec entry.  Each
tchk_def will be aSETUP, HOLD , SETUPHOLD, RECOVERY ,
REMOVAL , RECREM , SKEW, WIDTH , PERIOD orNOCHANGE  timing
check entry, containing timing check limit values for this cell entry.

Timing check entries specify limits in the way in which a signal can change
or two signals can change in relation to each other for reliable circuit
operation.  EDA analysis tools use this information in different ways:

■ Simulation tools issue warnings about signal transitions that violate
timing checks.

■ Timing analysis tools identify delay paths that might cause timing
check violations and may determine the constraints for those paths.

Syntax

tchk_def::= ( SETUPport_tchk port_tchk value)
||= ( HOLD port_tchk port_tchk value)
||= ( SETUPHOLD port_tchk port_tchk rvalue rvalue)
||= ( SETUPHOLD port_spec port_spec rvalue rvalue scond?ccond?)
||= ( RECOVERY port_tchk port_tchk value)
||= ( REMOVAL port_tchk port_tchk value)
||= ( RECREM port_tchk port_tchk rvalue rvalue)
||= ( RECREM port_spec port_spec rvalue rvalue scond?ccond? )
||= ( SKEW port_tchk port_tchk rvalue)
||= ( WIDTH port_tchk value)
||= ( PERIOD port_tchk value)
||= ( NOCHANGE port_tchk port_tchk rvalue rvalue)

TheCOND keyword allows the specification of conditional timing checks.
Its use is rather different from the specification of conditional input-output
path delays described in “Conditional Path Delays” on page  19 in that the
condition is associated with the specification of a port rather than the entry
as a whole.

Syntax

port_tchk ::= port_spec
||= ( COND QSTRING?timing_check_condition port_spec)

Timing Checks

Conditional Timing
Checks
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QSTRING is an optional symbolic name that can stand in for the expression
itself for annotators that operate by matching named placeholders in the
model to SDF constructs.  See “Condition Labels” on page  20, for a full
explanation.

timing_check_condition is the description of the state dependency of the
timing check.  The syntax oftiming_check_condition is shown in
“Conditions for Timing Checks” on page 4-9.  The perceptive reader will
notice that this expression evaluates to a logical signal, rather than a
boolean.  The intent is that the analysis tool should treat a logical zero as
FALSE and any other logical value (1, X or Z) asTRUE and that a particular
conditional timing check in the timing model is used only if the condition
is TRUE.

The annotator must locate in the timing model a timing check with
conditions matching those specified.  Other timing checks of the same kind
but with different conditions from the SDF entry will not receive the data.
SDF timing check entries with no conditions match any timing check in the
model of the same kind and between the ports specified in the SDF entry.

An alternative syntax is available forSETUPHOLD andRECREM  timing
checks.  This associates the conditions with the “stamp” and “check”
events in the analysis tool rather than theport_spec.  Separate conditions
can be supplied for the “stamp” and “check” events using theSCOND and
CCOND keywords. Note,SCOND or CCOND or bothSCOND and
CCOND take precedence overCOND.

Syntax

scond ::= ( SCOND QSTRING?timing_check_condition)
ccond ::= ( CCOND QSTRING?timing_check_condition)

For the setup phase of a setuphold timing check, the “stamp” condition
applies to the data port and the “check” condition to the clock or gate port.
For the hold phase, the “stamp” condition applies to the clock or gate port
and the “check” condition to the data port.

These conditions restore flexibility in expressing conditions that is lost
whenSETUP andHOLD  are combined intoSETUPHOLD, or when
RECOVERY  andREMOVAL  are combined intoRECREM .  For example,
here are separateSETUP andHOLD  statements for the same clock and
data signals, but with the condition attached to the clock in one case, and
to the data in the other:

(SETUP d (COND enb clk) (5))
(HOLD  (COND enb d) clk (7))

These conditions cannot be combined into a singleSETUPHOLD as shown
here:
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(SETUPHOLD (COND enb d) (COND enb clk) (5) (7))

This is because there is no way to specify that the condition should only
apply to signal clk for SETUP checks, and only to signal d for HOLD
checks.  The SCOND and CCOND fields provide this capability.  By
definition, the CCOND field defines a condition for the check event (the
2nd event):

(SETUPHOLD d clk (5) (7) (CCOND enb))

Any port_spec can be qualified with an edge identifier as follows:

Syntax

port_spec ::= port_instance
||= port_edge

port_edge ::= ( EDGE_IDENTIFIERport_instance)

This will be termed an “edge specification”.  When the annotator is
locating a timing check at specified ports in the timing model, it must
match the edge specification as well as the port names.  A port without an
edge specification in SDF matches any edge specification in the model.

Example

(CELL (CELLTYPE "DFF")
(INSTANCE a.b.c)
(TIMINGCHECK

(SETUP din (posedge clk) (3:4:5.5))
(HOLD din (posedge clk) (4:5.5:7))

)
)

This example shows a cell entry which provides values for setup and hold
timing checks with respect to the rising edge of the clock signal.

In the syntax descriptions of the timing check constructs, you will see that
eitherrvalue or value is used to specify the timing check limit to be
applied.  Althoughrvalue may be negative,value must be zero or positive.

Eachrvalue or value may be a single value (RNUMBER or NUMBER,
respectively) or three values separated by colons, (anrtriple or triple)
representing three sets of data for minimum, typical and maximum delay
conditions.  However, the use of singleRNUMBER/NUMBERs andrtriple/
triples should not be mixed in the same SDF file.

The use of triples in SDF allows you to carry three sets of data in the same
file.  Each number in the triple is an alternative value for the data and is
typically selected from the triple by the annotator or analysis tool on an
instruction from the user.  The prevailing use of the three numbers is to

Edge Specifications

Specifying Timing Check
Limit Values
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represent minimum, typical and maximum values computed at three
process/operating conditions for the entire design.  Any one or any two
(but not all three) of the numbers in a triple may be omitted if the
separating colons are left in place.  This indicates that no value has been
computed for that data, and the annotator should not make any changes if
that number is selected from the triple.

SETUPHOLD, RECREM  andNOCHANGE  timing checks have two
rvalues, the first for the setup limit and the second for the hold limit.

TheSETUP entry specifies limit values for a setup timing check.

Setup and hold timing checks are used to define a time interval during
which a “data” signal must remain stable in order for a transition of a
“clock” or “gate” signal to store the data successfully in a storage device
(flip-flop or latch).  The setup time limit defines the part of the interval
before the clock transition; the hold time limit defines the part of the
interval after the clock transition.  Any change to the data signal within this
interval results in a timing violation. To shift the interval with respect to
the clock transition, either the setup time or the hold time can be negative;
however, their sum must always be greater than zero.

Syntax

( SETUP port_tchk port_tchk value)

The first port_tchk identifies the data port.  If it includes an edge
specification, then the data is for a setup time check with respect only to
the specified transition at the data port.

The secondport_tchk identifies the clock/gate port and will normally
include an edge specification to identify the active edge of the clock or the
active-to-inactive transition of the gate.

value is theSETUP time limit between the data and clock ports and must
not be negative.

Example

(INSTANCE x.a)
(TIMINGCHECK

(SETUP din (posedge clk) (12))
)

As with allport_tchks, theCOND construct can be used to specify
conditions associated with the setup timing check.

TheHOLD  entry specifies limit values for a hold timing check.

Syntax

( HOLD port_tchk port_tchk value)

Setup Timing Check
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clk

setup

setup time

Hold Timing Check
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The firstport_tchk identifies the data port.

The secondport_tchk identifies the clock port.

value is theHOLD  time between the data and clock events and must not be
negative.

See “Setup Timing Check” above for a description of the use of hold
timing checks and more information about the use of edge specifications
in this context.

Example

(INSTANCE x.a)
(TIMINGCHECK

(HOLD din (posedge clk) (9.5))
. . .

)

As with allport_tchks, theCOND construct can be used to specify
conditions associated with the hold timing check.

TheSETUPHOLD entry specifies setup and hold limits in a single entry.

Syntax

( SETUPHOLD port_tchk port_tchk rvalue rvalue )
( SETUPHOLD port_spec port_spec rvalue rvalue scond?ccond? )

The first port_tchk or port_spec identifies the data port.

The secondport_tchk or port_spec identifies the clock port.

As with allport_tchks, theCOND construct can be used in the first form of
the setuphold timing check to specify conditions associated with the ports.

The firstrvalue is the setup time and the secondrvalue is the hold time.
Either can be negative, however their sum must be greater than zero.

In the second syntax form,scond andccond are the “stamp” and “check”
conditions as described above in “Conditional Timing Checks” on page
26.

See “Setup Timing Check” above for the use of setup and hold timing
checks and edge specifications in this context.

Example

(INSTANCE x.a)
(TIMINGCHECK

(SETUPHOLD (COND ~reset din) (posedge clk) (12) (9.5))
)

This SDF entry will match setup and hold timing checks in the model that
are conditional on~reset  at the time thedin  port changes.  At this time in
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hold time
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SetupHold Timing Check
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the analysis tool,~reset  must evaluate toTRUE, i.e. thereset  signal must
be in the zero, X or Z states, for the checks to be performed.

Example

(INSTANCE x.a)
(TIMINGCHECK

(SETUPHOLD din (posedge clk) (12) (9.5) (CCOND ~reset))
)

This SDF entry, using the second syntax form, will match setup and hold
timing checks in the model that are conditional on~reset  at the time of
the “check” event.  For the setup phase of the check, this will be when the
clk  port undergoes aposedge transition.  For the hold phase of the check,
this will be when thedin  port undergoes any transition.

TheRECOVERY  entry specifies limit values for recovery timing checks.
A recovery timing check is a limit of the time between the release of an
asynchronous control signal from the active state and the next active clock
edge, for example between clearbar and the clock for a flip-flop.  If the
active edge of the clock occurs too soon after the release of the clearbar,
the state of the flip-flop will become uncertain — it could be the value set
by the clearbar, or it could be the value clocked into the flip-flop from the
data input.  In other respects, a recovery check is similar to a setup check.

Syntax

( RECOVERY port_tchk port_tchk value)

The firstport_tchkrefers to the asynchronous control signal and will
normally have an edge identifier associated with it to indicate which
transition corresponds to the release from the active state.

The secondport_tchk refers to the clock (flip-flops) or gate (latches).  This
will also normally have an edge identifier to indicate the active edge of the
clock or the closing edge of the gate.

value is the recovery limit value and must not be negative.  It is the time it
takes a device to recover after an extraordinary operation, such as set or
reset, so that it can reliably return to normal operation, such as clocking in
of new data.

Example

(INSTANCE x.b)
(TIMINGCHECK

(RECOVERY (posedge clearbar) (posedge clk) (11.5))
)

As with allport_tchks, theCOND construct can be used to specify
conditions associated with the recovery timing check.

Recovery Timing Check
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TheREMOVAL  entry specifies limit values for removal timing checks.  A
removal timing check is a limit of the time between an active clock edge
and the release of an asynchronous control signal from the active state, for
example between the clock and the clearbar for a flip-flop.  If the release
of the clearbar occurs too soon after the active edge of the clock, the state
of the flip-flop will become uncertain — it could be the value set by the
clearbar, or it could be the value clocked into the flip-flop from the data
input.  In other respects, a removal check is similar to a hold check.

Syntax

( REMOVAL port_tchk port_tchk value)

The firstport_tchkrefers to the asynchronous control signal and will
normally have an edge identifier associated with it to indicate which
transition corresponds to the release from the active state.

The secondport_tchk refers to the clock (flip-flops) or gate (latches).  This
will also normally have an edge identifier to indicate the active edge of the
clock or the closing edge of the gate.

value is the removal limit value and must not be negative.  It is the time for
which an extraordinary operation, such as set or reset, must persist to
insure that a device will ignore any normal operation, such as clocking in
of new data.

Example

(INSTANCE x.b)
(TIMINGCHECK

(REMOVAL (posedge clearbar) (posedge clk) (6.3))
)

As with allport_tchks, theCOND construct can be used to specify
conditions associated with the recovery timing check.

TheRECREM  construct specifies both recovery and removal limits in a
single entry.

Syntax

( RECREM port_tchk port_tchk rvalue rvalue )
( RECREM port_spec port_spec rvalue rvalue scond?ccond? )

The first port_tchk or port_spec identifies the asynchronous control port.

The secondport_tchk or port_spec identifies the clock (for flip-flops) or
gate (for latches) port.

As with allport_tchks, theCOND construct can be used in the first form of
the recovery/removal timing check to specify conditions associated with
the ports.

Removal Timing Check
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removal
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The firstrvalue is the recovery time and the secondrvalue is the removal
time.  Either can be negative, however their sum must be greater than zero.

In the second syntax form,scond andccond are the “stamp” and “check”
conditions as described above in “Conditional Timing Checks” on page
26.

Example

(INSTANCE x.b)
(TIMINGCHECK

(RECREM (posedge clearbar) (posedge clk) (1.5) (0.8))
)

This example specifies a recovery time of 1.5 and a removal time of 0.8.
The recovery time limit (1.5 time units) defines the part of the interval
before the clock transition; the removal time limit (0.8 time units) defines
the part of the interval after the clock transition.  Any change to the
clearbar signal within this interval results in a timing violation.

TheSKEW entry specifies limit values for signal skew timing checks.  A
signal skew limit is the maximum allowable delay between two signals,
which if exceeded causes devices to behave unreliably.

Syntax

( SKEW port_tchk port_tchk rvalue)

The firstport_tchk is the stamp event and can include an edge
specification.

The secondport_tchk is the check event and can include an edge
specification.

rvalue is the maximum skew limit.

Example

(INSTANCE x)
(TIMINGCHECK

(SKEW (posedge clk1) (posedge clk2) (6))
)

As with allport_tchks, theCOND construct can be used to specify
conditions associated with the skew timing check.

TheWIDTH  entry specifies limits for a minimum pulse width timing
check. The minimum pulse width timing check is the minimum allowable
time for the positive (high) or negative (low) phase of each cycle.  If a
signal has unequal phases, you can specify a separate width check for each
phase.

clearbar
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recovery and removal time

removal
recovery

Skew Timing Check
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Syntax

( WIDTH port_tchk value)

port_tchk refers to the port at which the minimum pulse width timing
check is applied.  If it includes an edge specification, then the data will
apply to the width check for the phase of the signal beginning with this
edge (see example below).  Ifport_tchk does not include an edge
specification, then the data applies to both high and low phases of the
signal.

value is the minimum pulse width limit and cannot be negative.

Example

(INSTANCE x.b)
(TIMINGCHECK

(WIDTH (posedge clk) (30))
(WIDTH (negedge clk) (16.5))

)

In this example, the first minimum pulse width check is for the phase
beginning with the positive clock edge, i.e. the high phase of the clock, and
the second minimum pulse width check is for the phase beginning with the
negative clock edge, i.e. the low phase.

As with allport_tchks, theCOND construct can be used to specify
conditions associated with the minimum pulse width timing check.

ThePERIOD entry specifies limit values for a minimum period timing
check.  The minimum period timing check is the minimum allowable time
for one complete cycle of the signal.

Syntax

( PERIOD port_tchk value)

port_tchk refers to the port at which the minimum period timing check is
applied.  If it includes an edge specification, then the data will apply to the
period check between consecutive edges of this direction (see example
below).  Ifport_tchk does not include an edge specification, then the data
applies both to period checks between consecutive rising edges and
between consecutive falling edges if they are present in the timing model.

value is the minimum period limit and cannot be negative.

Example

(INSTANCE x.b)
(TIMINGCHECK

(PERIOD (posedge clk) (46.5))

Width

Width

Period Timing Check

Period
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In this example, the data applies to a minimum period check between
consecutive rising edges.

As with allport_tchks, theCOND construct can be used to specify
conditions associated with the minimum period timing check.

TheNOCHANGE  entry specifies limit values for a nochange timing check.
The nochange timing check is a signal check relative to the width of a
control pulse.  A “setup” period is established before the start of the control
pulse and a “hold” period after the pulse.  The signal checked against the
control signal must remain stable during the setup period, the entire width
of the pulse and the hold period.  A typical use of a nochange timing check
is to model the timing of memory devices, when address lines must remain
stable during a write pulse with margins both before and after.

Syntax

( NOCHANGE port_tchk port_tchk rvalue rvalue)

The firstport_tchk refers to the control port, which is typically a write
enable input to a memory or register file device.  An edge specification
must be included for the control port.

The secondport_tchk refers to the port checked against the control port,
which is typically an address or select input to a memory or register file
device.  An edge specification can be included.

The first rvalue is the minimum time that the data/address must be present
(stable) before the specified edge of the control signal (setup).

The second rvalue is the minimum time that the data/address must remain
stable after the opposite edge of the control signal (hold).

Example

(INSTANCE x)
(TIMINGCHECK

(NOCHANGE (negedge write) addr (4.5) (3.5))
)

This example defines a period beginning 4.5 time units before the falling
edge ofwrite  and ending 3.5 time units after the subsequent rising edge
of write .  During this time period, theaddr  signal must not change.

As with allport_tchks, theCOND construct can be used to specify
conditions associated with the nochange timing check.

No Change Timing Check

write

addr

nochange check

4.5 3.5
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Timing specifications that start with theTIMINGENV  keyword associate
constraint values with critical paths in the design and provide information
about the timing environment in which the circuit will operate.  Constructs
in this section are used in forward-annotation and not back-annotation.

Syntax

te_spec ::= ( TIMINGENV te_def+ )

Any number ofte_def entries may appear in ate_spec entry.  Eachte_def
will be aPATHCONSTRAINT , PERIODCONSTRAINT , SUM, DIFF  or
SKEWCONSTRAINT  constraint entry, containing constraint values for
the design or anARRIVAL , DEPARTURE, SLACK  or WAVEFORM
timing environment entry, containing information about the timing
environment in which the circuit will operate.

Syntax

te_def ||= cns_def // constraint
::= tenv_def // timing environment

Constraints are covered in the next section.  Timing environment is
covered in “Constraints” on page  36

Constraint entries provide information about the timing properties that a
design is required to have in order to meet certain design objectives.  A tool
that is synthesizing some aspect of the design (logic synthesis, layout, etc.)
will adapt its strategy to try to ensure that the constraints are met and issue
warning messages in the event that they cannot be met.

Syntax

cns_def::= ( PATHCONSTRAINT name?port_instance port_instance+
rvalue rvalue)

||= ( PERIODCONSTRAINT port_instance value exception? )
||= ( SUM constraint_path constraint_path+ rvalue rvalue? )
||= ( DIFF constraint_path constraint_path value value? )
||= ( SKEWCONSTRAINT port_spec value)

The following sections describe the SDF constraint constructs.

ThePATHCONSTRAINT  entry represents delay constraints for paths.
Path constraints are the critical paths in a design identified during timing
analysis.  Layout tools can use these constraints to direct the physical
design.  The constraint specifies the maximum allowable delay for a path,

Constraints

Path Constraint



Timing Environment Entries

May 1995 3-37

which is typically identified by two ports, one at each end of the path.  You
can also specify intermediate ports to uniquely identify the path.

Syntax

( PATHCONSTRAINT name? port_instance port_instance+ rvalue rvalue )

name ::= ( NAME  QSTRING)

nameis optional and allows a symbolic name to be associated with the
path.  This name should be used by the tool to identify the path to the user
when information about the path (problems, failures, etc.) is to be
provided.  The name is assumed to be more convenient for this purpose
than the list of port instances.

The firstport_instance is the start of the path.

The lastport_instance is the end of the path.  You can specify intermediate
points along the path by using additionalport_instances in this entry.

The firstrvalueis the maximum rise delay between the start and end points
of the path.

The secondrvalue is the maximum fall delay between the start and end
points of the path.

Example

(INSTANCE x)
(TIMINGENV

(PATHCONSTRAINT y.z.i3 y.z.o2 a.b.o1 (25.1) (15.6))
)

ThePERIODCONSTRAINT  construct allows a path constraint value to be
specified for groups of paths in a synchronous circuit.  All paths in the
group will be from the common clock input of some flip-flops to the data
inputs of the flip-flops that share the common clock.  This can be used to
derive  the frequency at which a circuit must operate as a constraint on how
long signals can take after a clock edge to reach the register data inputs.

Syntax

( PERIODCONSTRAINT port_instance value exception? )

exception ::= ( EXCEPTION cell_instance+ )

port_instance identifies the common clock signal which is the start of all
constrained paths.  Whereas the start of aPATHCONSTRAINT  entry is
normally an input port,port_instance here is normally the output port of
the device that drives the clock of the flip-flops.  Only flip-flops directly
connected to this output are in constrained paths.  Paths that pass through
other buffers before reaching a flip-flop clock are also considered in the
group constrained by this entry.
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value is the maximum allowable delay for each path in the group.  Included
in this delay is the clock-to-output delay of the flip-flop driven from
port_instance, the setup time of the flip flop that ends the path, and the
delay through any combinational logic before arrival at the data input of a
flip-flop.  Not included is the difference in the timing of the clock of that
flip-flop that ends the path  from the clock that starts the path.  These two
times will cause thevalue supplied in aPERIODCONSTRAINT  entry to
be different (typically smaller) than the intended clock period at which the
circuit will operate.  Since only onevalue can be supplied for all paths in
this group, some data may be lost in combining many
PATHCONSTRAINT  entries into onePERIODCONSTRAINT  entry.

exceptionis optional and allows paths to be excluded from the group by
the identification of a cell through which they pass.  One or more cell
instances can be listed after theEXCEPTION  keyword.  The hierarchical
path to these cell instances is relative to the scope or design region
identified by the cell entry.  Therefore, thePERIODCONSTRAINT  entry
must appear at a hierarchical level that includes the cell instance that drives
the common clock inputs of the flip-flops and any cell instances to be
placed in theexception list.

Example

(INSTANCE x)
(TIMINGENV

(PERIODCONSTRAINT bufa.y (10)
(EXCEPTION (INSTANCE dff3) )

)
)

Clearly, any tool that makes use ofPERIODCONSTRAINT  entries in SDF
must be able to traverse the design topology and recognize flip-flops and
their clock and data inputs.

TheSUM entry represents a constraint on the sum of the delay over two or
more paths in a design.

Syntax

( SUM constraint_path constraint_path+ rvalue rvalue? )

constraint_path::= ( port_instance port_instance)

Eachconstraint_path specifies a path to be included in the sum.  You must
specify at least two paths, but can specify more.

In eachconstraint_path the firstport_instance is the beginning of the path
and the secondport_instance is the end of the path.

rvalue is the constraint value.  The total (sum) of the individual delays
associated with eachconstraint_path must be less thanrvalue.  If two
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rvalues are supplied, the first applies to the rising transition at the end of
the path and the second to the falling.

Example

(INSTANCE x)
(TIMINGENV

(SUM (m.n.o1 y.z.i1) (y.z.o2 a.b.i2) (67.3))
)

This example constrains the sum of the delays along the two nets shown as
heavy lines in the diagram to be less than 67.3 time units.

TheDIFF  entry represents a constraint on the difference in the delay over
two paths in a design.

Syntax

( DIFF constraint_path constraint_path value value? )

constraint_path specifies a path between two ports.  You must specify
exactly two paths.

In eachconstraint_path the firstport_instance is the beginning of the path
and the secondport_instance is the end of the path.

value is the constraint value and must be a positive number or zero.  The
absolute value of the difference of the individual delays in the two circuit
paths must be less thanvalue.  If two values are supplied, the first applies
to the rising transition at the end of the path and the second to the falling.

Example

(INSTANCE x)
(TIMINGENV

(DIFF (m.n.o1 y.z.i1) (y.z.o2 a.b.i2) (8.3) )
)

TheSKEWCONSTRAINT  entry represents a constraint on the spread of
delays from a common driver to all driven inputs.  Only the driving output
port can be specified in this construct.  All inputs connected to this output
are implied end-points for constrained paths.  Only paths over interconnect
can be constrained as these implied paths cannot pass through any active
devices.

Syntax

( SKEWCONSTRAINT port_spec value)

port_spec refers to the port driving the net.

value is the constraint value and must be a positive number or zero
(although zero clock skew might be a hard constraint for a layout tool to

i1

i2
o1

i1

i3

o1
i2 o2

z

x

b

y a

n
o1i1

i2

m

Diff Constraint

Skew Constraint



3-40 Using the Standard Delay Format

Timing Environment Entries

meet!).   The delays from the output specified byport_spec to all inputs
that it drives may not differ from each other by more thanvalue.  This does
not place a constraint on the actual value of the delays, just their “spread”.

Example

(CELL
(CELLTYPE “buf”)
(INSTANCE top.clockbufs)
(TIMINGENV

(SKEWCONSTRAINT (posedge y) (7.5))
)

)

In this example, a buffer cell of cell typebuf  is used to drive some clock
inputs in a circuit.  It is buried in the design hierarchy by being instantiated
asbufb  in a user block calledclockbufs , which in turn is part of the block
top .  In the excerpt from an SDF file, this buffer is identified in aCELL
entry and its output is specified in aSKEWCONSTRAINT  entry.  The
effect is to request that the arrival of the positive edge of the clock should
not deviate by more than 7.5 between all the inputs driven by the heavily
drawn net in the diagram.  Neither the inputs nor the net name need to be
specified in the SDF file entry.  Note that the driven inputs can be
anywhere in the design, irrespective of the hierarchical organization.

Timing environment entries provide information about the timing
environment in which the circuit will operate.  This can be used by analysis
tools to determine whether or not a design will operate correctly given the
back-annotation timing data given elsewhere in the file.  It can also be used
to compute constraints to be forward-annotated to subsequent stages in the
design synthesis process.

Syntax

tenv_def::= ( ARRIVAL port_edge? port_instance rvalue rvalue rvalue rvalue)
||= ( DEPARTURE port_edge? port_instance

rvalue rvalue rvalue rvalue)
||= ( SLACK port_instance rvalue rvalue rvalue rvalue NUMBER?)
||= ( WAVEFORM port_instance NUMBER edge_list)

The following sections describe the SDF timing environment constructs.

TheARRIVAL  construct defines the time at which a primary input signal
is to be applied during the intended circuit operation.  Tools use this
information to analyze the circuit for timing behavior and to compute
constraints for logic synthesis and layout.

Syntax

( ARRIVAL port_edge? port_instance rvalue rvalue rvalue rvalue)
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port_edgeidentifies a port and signal edge that form the time reference for
the arrival time specification.  The port must be an input port.  The
port_edge is required if the primary input signal is a fan-out from a
sequential element, in which case,port_edge is usually referred to an
active edge of a clock signal.  Otherwise, theport_edge can be omitted.
All ARRIVAL  constructs that do not have theport_edge refer to the same
implicit time reference point.  This reference time should be treated as the
time 0 of allWAVEFORM  constructs.  Note that, to fully specify a timing
environment, aWAVEFORM  statement is required for each clock signal.

port_instance specifies the port at which the arrival time is to be defined.
It must be an input or bidirectional port that is a primary (external) input
of the top-level module.

Fourrvalues carry the arrival-time data in this order: earliest rising, latest
rising, earliest falling and latest falling arrival times.  All values are
relative to the time reference, either by aport_edge, or by the implicit
reference point.  The earliest arrival times must be less than the latest
arrival times for the same transition.

Multiple ARRIVAL  statements can be defined for the same input to
represent signal paths of different referenceport_edges.

Example

(INSTANCE top)
(TIMINGENV

(ARRIVAL (posedge MCLK) D[15:0] (10) (40) (12) (45) )
)

This example specifies that rising transitions at D[15:0] are to be applied
no sooner than 10 and no later than 40 time units after the rising edge of
the reference clockMCLK.  Falling transitions are to be applied no sooner
than 12 and no later than 45 time units after the edge.

TheDEPARTURE construct defines the time at which a primary output
signal is to occur during the intended circuit operation.  Tools use this
information to analyze the circuit for timing behavior and to compute
constraints for logic synthesis and layout.

Syntax

( DEPARTURE port_edge? port_instance rvalue rvalue rvalue rvalue)

port_edgeidentifies a port and signal edge that form the time reference for
the departure time specification.  The port must be an input port.  The
port_edge is required if the primary output is a fan-out from a sequential
element, in which case,port_edge is usually referred to an active edge of
a clock signal.  Otherwise, theport_edge can be omitted.  All

Departure Time
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DEPARTURE constructs that do not have theport_edge refer to the same
implicit time reference point.  This reference time should be treated as the
time 0 of allWAVEFORM  constructs.  Note that, to fully specify a timing
environment, aWAVEFORM  statement is required for each clock signal.

port_instance specifies the port at which the departure time is to be
defined.  It must be an output or bidirectional port that is a primary
(external) output of the top-level module.

Fourrvalues carry the departure-time data in this order: earliest rising,
latest rising, earliest falling and latest falling departure times.  All values
are relative to the time reference, either by aport_edge, or by the implicit
reference point.  The earliest departure times must be less than the latest
departure times for the same transition.

Multiple DEPARTURE statements can be defined for the same output to
represent signal paths of different referenceport_edges.

Example

(INSTANCE top)
(TIMINGENV

(DEPARTURE (posedge SCLK) A[15:0] (8) (20) (12) (34) )
)

The example specifies that rising transitions at primary output A[15:0]

are to occur no sooner than 8 and no later than 20 time units after the rising
edge of the reference clockSCLK.  Falling transitions are to occur no sooner
than 12 and no later than 34 time units after the edge.

TheSLACK  construct is used to specify the available slack or margin in a
delay path.  This is a comparison of the calculated delay over a path to the
delay constraints imposed upon that path.  Positive slack indicates that the
constraints are met with room to spare.  Negative slack indicates a failure
to construct the circuit according to the constraints.  A layout or logic
synthesis tool can use slack information to make trade-offs in cell
placement and routing or re-synthesis of parts of the circuit.  The objective
should be to eliminate negative slack and achieve an even distribution of
positive slack.

Syntax

( SLACK port_instance rvalue rvalue rvalue rvalue NUMBER?)

port_instancespecifies the input port at which slack/margin information is
given in this entry.  Paths terminating at this port have at least the indicated
slack/margin.  It is not possible in this construct to specify individual paths.
The values given must be the minimum of all paths that converge to the

Slack Time
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specifiedport_instance.  However, the slack/margin may be given at
various places on the same path.

Fourrvalues carry the slack/margin data.  In order, they are the rising setup
slack, the falling setup slack, the rising hold slack and the falling hold
slack.  “Rising” and “falling” indicate the direction of transitions at the
specifiedport_instance to which data applies.  The setup slack is the
additional delay that could be tolerated in all paths ending at this port
without causing design constraints to be violated.  Similarly, the hold slack
is the reduction of the delay that could be tolerated in all these paths.  If
rtriples are used in theservalues, then each number belongs to the data set
for that position in the triple.  Since the prevailing use of these data sets is
to carry data for minimum, typical and maximum delays, setup slack
rtriples will have the unusual property of decreasing in value from left to
right.

NUMBER is optional and, if present, represents the clock period on which
the slack/margin values are based.  The clock period refers to the one
specified by aWAVEFORM  construct.

Example

(CELL
(CELLTYPE “cpu”)
(INSTANCE macro.AOI6)
(TIMINGENV

(SLACK B (3) (3) (7) (7))
)

)

In this example, the delay of any or all data paths leading to port
macro.AOI6.B  could be increased by 3 time units without violating a setup
requirement on a constrained device down the path traversed by this port.
This SLACK  entry indicates that the signal arrives at portmacro.AOI6.B

in time to meet the setup time requirement of a flip-flop down the path with
3 time units to spare.  Thus, the signals could be delayed up the data path
by an additional 3 time units with no ill consequences.  The example also
shows that the delay of any or all datapaths leading to portmacro.AOI6.B

could be decreased by 7 time units without violating a hold requirement on
a constrained device down the path.

Multiple SLACK  entries are allowable for the sameport_instance and are
distinct if NUMBER is different.

TheWAVEFORM  construct allows the specification of a periodic
waveform that will be applied to a circuit during its intended operation.
Typically, this will be used to define a clock signal.  Tools can use this
information in analyzing the circuit for timing behavior and to compute
constraints for logic synthesis and layout.

Waveform Specification
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Syntax

( WAVEFORM port_instance NUMBER edge_list)

edge_list ::= pos_pair+
||=neg_pair+

pos_pair ::= ( posedge RNUMBER RNUMBER?)
( negedge RNUMBER RNUMBER?)

neg_pair ::= ( negedge RNUMBER RNUMBER?)
( posedge RNUMBER RNUMBER?)

port_instance identifies the port in the circuit at which the waveform will
appear.  It must be an input or bidirectional port.  If the port is not a primary
input of the circuit, i.e. if it is driven by the output of some other circuit
element in the scope of the analysis, then the signal driven in the circuit
should be ignored and the specified waveform should replace it in the
analysis.  The hierarchical path to this port is relative to the scope or design
region identified by the cell entry.

NUMBER specifies the period of the waveform.  The waveform described
repeats indefinitely at this interval.

edge_list describes a single period of the waveform.  It consists of a list of
edge pairs, which can be either aposedge entry followed by anegedge entry
or anegedge entry followed by aposedge entry.  Thus, the total number of
edges in the list will be even and edges will alternate betweenposedge and
negedge.  In addition to the direction of the transition, each edge gives the
time at which the transition takes place relative to the start of each period.
Offsets must increase monotonically throughout theedge_list and must not
exceed the period.  If oneRNUMBER is supplied, then this precisely
defines the transition offset.  If twoRNUMBERs are supplied, then they
define an uncertainty region in which the transition will take place.  The
first RNUMBER gives the beginning of the uncertainty region and the
secondRNUMBER gives its end.  Tools using this construct with two
RNUMBERs should assume that a single transition of the specified
direction occurs somewhere in the uncertainty region, but should make no
assumptions about exactly where.  Tools unable to model this edge
uncertainty should issue a warning message and use the mean of the two
RNUMBERs to locate the transition.

Example

(CELL
(CELLTYPE “cpu”)
(INSTANCE top)
(TIMINGENV

(WAVEFORM clka 15 (posedge 0 2) (negedge 5 7))
)

)

0 5 10 15

Period = 15
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This example shows the specification of a waveform of period 15 to be
applied to porttop.clka .  Within each period, a rising edge occurs at
somewhere between 0 and 2 and a falling edge somewhere between 5 and
7.  Tools unable to deal with uncertainty in waveforms would place the
rising edge and 1 and the falling edge at 6 and issue a warning.

Example

(CELL
(CELLTYPE “cpu”)
(INSTANCE top)
(TIMINGENV

(WAVEFORM clkb 25
(negedge 0) (posedge 5)
(negedge 10) (posedge 15)

)
)

)

This example shows the specification of a waveform of period 25 to be
applied to porttop.clkb .  Within each period, a falling edge occurs at 0,
a rising edge at 5, a falling edge at 10 and a rising edge at 15.

Example

(CELL
(CELLTYPE “cpu”)
(INSTANCE top)
(TIMINGENV

(WAVEFORM clkb 50
(negedge -10) (posedge 20)

)
)

)

This example shows that negative numbers can be used in defining a
waveform.

0 5 10 15 20 25 30

Period = 25

-20 -10 0 10 20 30 40

Period = 50
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SDF File Characters

The legal SDF character set and the method of including comments in SDF
files are described in this section.

The characters you can use in an SDF file are the following:

■ Alphanumeric characters – the letters of the alphabet, all the numbers,
and the underscore ‘_’ character.

■ Special characters – any character other than alphanumeric characters
(which includes the underscore as defined above) is a special character.
The following is a list of special characters:
!  "  #  $  %  &  ´  (  )  *  +  ,  -  .  /  :  ;  <  =  >  ?  @  [  \  ]  ^  `  {  |  }  ~

■ Syntax characters – these are special characters required by the syntax.
Examples are: (  )  "  *  :  [  ]  ? and the hierarchy divider character but
see also the definitions of SDF operators, etc.

■ The escape character – to use any special character in anIDENTIFIER,
prefix it with the escape character, a backslash ‘\’.  See “Variables” on
page 4-2 for a description of anIDENTIFIER.  Note that if the character
would normally have any special meaning in anIDENTIFIER, this is
lost when the character is escaped.

■ Hierarchy divider character – either the period ‘.’ or the slash ‘/’ can be
established as the hierarchy divider character, see “Hierarchy Divider
Entry” on page 3-5.  This character only has this special meaning in an
IDENTIFIER.  An escaped hierarchy divider character loses its
meaning as a hierarchy divider.

■ White space characters – tabs, spaces and newlines are considered
white space.  Use white space to separate lexical tokens.

Keywords,IDENTIFIERs, characters, and numbers must be delimited
either by syntax characters or by white space.

Comments can be placed in SDF files using either “C” or “C++” styles.

“C”-style comments begin with /* and end with */.  Nesting of “C”-style
comments is not permitted.  The places in an SDF file where it is legal to
put “C”-style comments are not defined by this specification.  Different
annotators may have different capabilities in this regard.

“C++”-style comments begin with // and continue until the end of the
current line (the next newline character).  Annotators should ignore the
double-slash and any text after them on any line in the file.

SDF Characters

Comments
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The notation used in presenting the syntax of SDF are as follows:

item item is a symbol for a syntax construct item.

item ::= definition the BNF symbolitem is defined asdefinition.

item ::= definition1 the BNF symbolitem is defined either asdefinition1 or asdefinition2.
||= definition2 (any number of alternative syntax definitions may appear)

item? item is optional in the definition (it may appear once or not at all).

item* item may appear zero or any number of times.

item+ item may appear one or more times (but may not be omitted).

KEYWORD is a keyword and appears in the file as shown.  Keywords are shown in
uppercase bold for easy identification but are case insensitive.

VARIABLE is a symbol for a variable.  Variable symbols are shown in uppercase for
easy identification.  Some variables are defined as one of a number of
discrete choices (e.g.HCHAR, which is either a period or a slash).  Other
variables represent user data such as names and numbers.

This section defines the user data variables used in SDF.  Variables which
must be one of a number of choices (enumerations) are defined in the main
syntax definition which follows.

QSTRING is a string of any legal SDF characters and spaces, excluding tabs and
newlines, enclosed by double-quotes.  Except for the double-quote itself,
special characters lose their special meaning in aQSTRING.

NUMBER is a non-negative (zero or positive) real number, for example: 0, 1, 0.0, 3.4,
.7, 0.3, 2.4e2, 5.3e-1

RNUMBER is a positive, zero or negative real number, for example: 0, 1, 0.0, -3.4, .7,
-0.3, 2.4e2, -5.3e-1

DNUMBER is a non-negative integer number, for example: +12, 23, 0

TSVALUE is a real number followed by a unit.  The number must be 1, 10, 100, 1.0,
10.0, or 100.0.  The unit must be us, ns, or ps representing microseconds,
nanoseconds and picoseconds, respectively.  A space may optionally
separate the number and unit.  Examples ofTSVALUE are 1ns, 100 ps, 1us.
See also “Timescale Entry” on page 3-7.

Notation

Variables
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IDENTIFIER is the name of an object in the design.  This could be an instance of a design
block or cell or a port depending on where theIDENTIFIER occurs in the
SDF file. Identifiers can be up to 1024 characters long.

The following characters can be used in an identifier:

■ Alphanumeric characters – the letters of the alphabet, all the numbers,
and the underscore ‘_’ character.IDENTIFIERs are case-sensitive, i.e.
uppercase and lowercase letters are considered different.

■ Bit specs – to indicate an object selected from an array of objects, for
example a single port selected from a bus port or an instance from an
array of instances, use a “bit spec” at the end of theIDENTIFIER of the
array (with no separating white space).  A bit spec consists of square
brackets (‘[’ and ‘]’) enclosing a range.  To select a single object, the
range should be a single positive integer, for example, [4].  To select a
contiguous group of objects, the range should be a pair of positive
integers separated by a colon (‘:’), for example, [3:31] and [15:0].

■ Hierarchy divider character – see “PATH” below.

■ The escape character ‘\’ – if you want to use a non-alphanumeric
character as a part of anIDENTIFIER it must be escaped by being
prefixed with the ‘\’ character.  Examples are shown below.
Note – this escaping mechanism is different from Verilog HDL where
the entireIDENTIFIER is escaped by placing one escape character (\)
before theIDENTIFIER and a white space after theIDENTIFIER.
Characters that have special meaning in identifiers, such as ‘[’, ‘]’ and
the hierarchy divider, loose that special meaning when escaped.

■ Do not use white space (spaces, tabs or newlines) in anIDENTIFIER.

Examples of correctIDENTIFIERs are:

AMUX\+BMUX

Cache_Row_\#4

mem_array\[0\:1023\]\(0\:15\) ; From a language where square
; brackets indicates arrays
; parentheses indicates bit specs

pipe4\-done\&enb[3] ; Unescaped square brackets
; represent a bit spec

PATH is a hierarchicalIDENTIFIER.  The names of levels in the design hierarchy
must be separated by the hierarchy divider character.  This character must
not be escaped or it looses its meaning as a hierarchy divider.  See
“Hierarchy Divider Entry” on page 3-5 for details on how the hierarchy
divider character is established.
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The formal syntax definition for the Standard Delay Format is given here.
It is not possible, using the notation chosen, to clearly show how white-
space must be used in the SDF file.  Some explanations and comments are
included in the formal descriptions.  A double-slash (//) indicates
comments which are not part of the syntax definition.

delay_file ::= ( DELAYFILE sdf_header cell+ )

sdf_header ::= sdf_version design_name?date?vendor?program_name?
program_version?hierarchy_divider?voltage?process?
temperature? time_scale?

sdf_version ::= ( SDFVERSION  QSTRING)

design_name ::= ( DESIGN  QSTRING)

date ::= ( DATE   QSTRING)

vendor ::= ( VENDOR  QSTRING)

program_name ::= ( PROGRAM   QSTRING)

program_version ::= ( VERSION  QSTRING)

hierarchy_divider ::= ( DIVIDER  HCHAR )

HCHAR ::= . // a period character
||= / // a slash character

voltage ::= ( VOLTAGE rtriple )
||= ( VOLTAGE  RNUMBER )

process ::= ( PROCESS  QSTRING)

temperature ::= ( TEMPERATURE rtriple )
||= ( TEMPERATURE  RNUMBER )

time_scale ::= ( TIMESCALE  TSVALUE )
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Cell entries are defined as follows:

cell ::= ( CELL celltype cell_instance timing_spec* )

celltype ::= ( CELLTYPE  QSTRING )

cell_instance ::= ( INSTANCE  PATH?)
||= ( INSTANCE WILDCARD )

WILDCARD ::= * // the asterisk character

Timing specifications are defined as follows:

timing_spec ::= del_spec
||= tc_spec
||= te_spec

del_spec ::= ( DELAY deltype+ )

tc_spec ::= ( TIMINGCHECK tchk_def+ )

te_spec ::= ( TIMINGENV te_def+ )

deltype ::= ( PATHPULSE input_output_path?value value? )
||= ( PATHPULSEPERCENT input_output_path?value value? )
||= ( ABSOLUTE del_def+ )
||= ( INCREMENT del_def+ )

input_output_path ::= port_instance port_instance

del_def ::= ( IOPATH port_spec port_instance
( RETAIN delval_list)* delval_list)

||= ( COND QSTRING?conditional_port_expr
( IOPATH port_spec port_instance
( RETAIN delval_list)* delval_list) )

||= ( CONDELSE
( IOPATH port_spec port_instance
( RETAIN delval_list)* delval_list) )

||= ( PORT port_instance delval_list)
||= ( INTERCONNECT port_instance port_instance delval_list)
||= ( DEVICE port_instance?delval_list)

tchk_def ::= ( SETUP port_tchk port_tchk value)
||= ( HOLD port_tchk port_tchk value)
||= ( SETUPHOLD port_tchk port_tchk rvalue rvalue)
||= ( SETUPHOLD port_spec port_spec rvalue rvalue scond?ccond? )
||= ( RECOVERY port_tchk port_tchk value)
||= ( REMOVAL port_tchk port_tchk value)
||= ( RECREM port_tchk port_tchk rvalue rvalue)

Cell Entries

Timing Specifications
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||= ( RECREM port_spec port_spec rvalue rvalue scond?ccond? )
||= ( SKEW port_tchk port_tchk rvalue)
||= ( WIDTH port_tchk value)
||= ( PERIOD port_tchk value)
||= ( NOCHANGE port_tchk port_tchk rvalue rvalue)

port_tchk ::= port_spec
||= ( COND QSTRING?timing_check_condition port_spec)

scond ::= ( SCOND QSTRING?timing_check_condition)

ccond ::= ( CCOND QSTRING?timing_check_condition)

name ::= ( NAME  QSTRING?)

exception ::= ( EXCEPTION cell_instance+)

te_def ::= cns_def
||= tenv_def

cns_def ::= ( PATHCONSTRAINT name?port_instance port_instance+ rvalue rvalue)
||= ( PERIODCONSTRAINT port_instance value exception? )
||= ( SUM constraint_path constraint_path+ rvalue rvalue? )
||= ( DIFF constraint_path constraint_path value value? )
||= ( SKEWCONSTRAINT port_spec value)

tenv_def ::= ( ARRIVAL port_edge? port_instance rvalue rvalue rvalue rvalue)
||= ( DEPARTURE port_edge?port_instance rvalue rvalue rvalue rvalue)
||= ( SLACK port_instance rvalue rvalue rvalue rvalue NUMBER?)
||= ( WAVEFORM port_instance NUMBER edge_list)

constraint_path ::= ( port_instance port_instance)

port_spec ::= port_instance
||= port_edge

port_edge ::= ( EDGE_IDENTIFIERport_instance)

EDGE_IDENTIFIER ::= posedge
||= negedge
||= 01
||= 10
||= 0z
||= z1
||= 1z
||= z0

port_instance ::= port
||= PATH HCHARport
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port ::= scalar_port
||= bus_port

scalar_port ::= IDENTIFIER
||= IDENTIFIER[ DNUMBER ]

bus_port ::= IDENTIFIER [ DNUMBER : DNUMBER ]

edge_list ::= pos_pair+
||= neg_pair+

pos_pair ::= ( posedge RNUMBER RNUMBER?) ( negedge RNUMBER RNUMBER?)

neg_pair ::= ( negedge RNUMBER RNUMBER?) ( posedge RNUMBER RNUMBER?)

Data values in SDF files are defined as follows:

value ::= ( NUMBER?)
||= ( triple? )

A value consists of aNUMBER in parentheses, atriple in parentheses or an
empty pair of parentheses.  Empty parentheses indicate that no value is
supplied for a particular data item.  This is used primarily where a construct
has a list of data items and it is desired to supply a value for an item further
down the list but not for earlier items.  The empty parentheses mark the
places of the earlier items.  An annotator should take no action when it
encounters empty parentheses.  In particular, it should not interpret this in
the same way as a value of zero.

triple ::=  NUMBER : NUMBER? : NUMBER?
||=  NUMBER? : NUMBER : NUMBER?
||=  NUMBER? : NUMBER? : NUMBER

A triple consists of one, two or three colon-separatedNUMBERs.  Each
NUMBER corresponds to a data value in one of three data sets, commonly
used (in order) as values under best case/minimum, nominal/typical and
worst case/maximum operating conditions.  If aNUMBER is omitted, then
a value is not included for that data set.  At least oneNUMBER is required.
Both colons must always be present.

rvalue ::= ( RNUMBER?)
||= ( rtriple? )

rtriple ::=  RNUMBER : RNUMBER? : RNUMBER?
||=  RNUMBER? : RNUMBER : RNUMBER?
||=  RNUMBER? : RNUMBER? : RNUMBER

Apart from allowing negative numbers (RNUMBER instead ofNUMBER),
rvalue andrtriple are essentially the same asvalue andtriple.

Data Values
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delval ::= rvalue
||= ( rvalue rvalue)
||= ( rvalue rvalue rvalue)

For specifying delay values,delval extendsrvalue by allowing two or three
rvalues to be grouped in a further set of parentheses.  When this is used,
the firstrvalue specifies the delay, as if a singlervalue were given.  The
second specifies the pulse rejection limit, or “r-limit”, associated with this
delay.  The third specifies the X-limit, or “e-limit”.  This allows pulse
control data to be associated in a uniform way with all types of delays in
SDF, i.e.IOPATH , PORT, INTERCONNECT  andDEVICE  delays.  Note
that since anyrvalue can be an empty pair of parentheses, each type of
delay data can be annotated or omitted as the need arises.

delval_list ::= delval
||= delval delval
||= delval delval delval
||= delval delval delval delval delval?delval?
||= delval delval delval delval delval delval

delval delval?delval?delval?delval?delval?

The meaning ofdelvals in andelval_list is different for lists of length one,
two, three, six or twelve.  Lists of length four or five are interpreted in the
same way as lists of length six with trailing empty parentheses.  Simularly,
lists of length seven to eleven are interpreted in the same way as lists of
length twelve with trailing empty parentheses.  A complete discussion of
the use ofdelval_list is included in “Specifying Delay Values” on page 3-
16.
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Path delay conditional expressions are used in conjunction withIOPATH
entries and are defined as follows:

conditional_port_expr ::= simple_expression
||= ( conditional_port_expr)
||= UNARY_OPERATOR( conditional_port_expr)
||= conditional_port_expr BINARY_OPERATORconditional_port_expr

simple_expression ::= ( simple_expression)
||= UNARY_OPERATOR( simple_expression )
||= port
||= UNARY_OPERATORport
||= SCALAR_CONSTANT
||= UNARY_OPERATOR SCALAR_CONSTANT
||= simple_expression QM simple_expression CLN simple_expression
||= { simple_expression concat_expression? }
||= { simple_expression{ simple_expression concat_expression? } }

concat_expression ::= , simple_expression

QM ::= ? // a literal question mark

CLN ::= : // a literal colon

Timing check conditional expressions are defined as follows:

timing_check_condition ::= scalar_node
||= INVERSION_OPERATORscalar_node
||= scalar_node EQUALITY_OPERATOR SCALAR_CONSTANT

scalar_node ::= scalar_port
scalar_net

scalar_net ::= IDENTIFIER

This section defines the logical constants used in SDF conditional port
expressions and timing check conditions.

SCALAR_CONSTANT ::= 1‘b0 // logical zero
||= 1‘b1 // logical one
||= 1‘B0 // logical zero
||= 1‘B1 // logical one
||= ‘b0 // logical zero
||= ‘b1 // logical one
||= ‘B0 // logical zero
||= ‘B1 // logical one
||= 0 // logical zero
||= 1 // logical one

Conditions for Path
Delays

Conditions for Timing
Checks

Constants for
Expressions
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This section defines the operators used in SDF conditional port
expressions and timing check conditions.

UNARY_OPERATOR ::= + // arithmetic identity
||= - // arithmetic negation
||= ! // logical negation
||= ~ // bit-wise unary negation
||= & // reduction unary AND
||= ~& // reduction unary NAND
||= | // reduction unary OR
||= ~| // reduction unary NOR
||= ^ // reduction unary XOR
||= ^~ // reduction unary XNOR
||= ~^ // reduction unary XNOR (alternative)

INVERSION_OPERATOR ::=! // logical negation
||= ~ // bit-wise unary negation

BINARY_OPERATOR ::= + // arithmetic sum
||= - // arithmetic difference
||= * // arithmetic product
||= / // arithmetic quotient
||= % // modulus
||= == // logical equality
||= != // logical inequality
||= === // case equality
||= !== // case inequality
||= && // logical AND
||= || // logical OR
||= < // relational
||= <= // relational
||= > // relational
||= >= // relational
||= & // bit-wise binary AND
||= | // bit-wise binary inclusive OR
||= ^ // bit-wise binary exclusive OR
||= ^~ // bit-wise binary equivalence
||= ~^ // bit-wise binary equivalence (alternative)
||= >> // right shift
||= << // left shift

EQUALITY_OPERATOR ::= == // logical equality
||= != // logical inequality
||= === // case equality
||= !== // case inequality

Operators for
Expressions
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This section describes the operation of the equality operators used in SDF
conditional port expressions and timing check conditions.  These operators
return a logical value representing the result of the comparison, which is 1
for TRUE and 0 forFALSE but may also be X.

a == b (logical equality) will beTRUE (1) only if a andb are of known
logical state (0 or 1) and equal andFALSE (0) only ifa andb are known and
not equal.  If eithera or b is X or Z, then the result will be X.

a != b (logical inequality) will beTRUE (1) only if a andb are known and
not equal andFALSE (0) only if a and b are known and equal.  If eithera or
b is X or Z, then the result will be X.

a === b (case equality) will beTRUE (1) if a andb are of the exact same
logical state, including the X and Z states, andFALSE (0) otherwise.

a !== b (case inequality) will beTRUE (1) if a andb are of different logical
states, including the X and Z states, andFALSE (0) otherwise.

This section defines the precedence rules of SDF operators in descending
order.

! ~ highest precedence
* / %
+ -
<< >>
< <= > >=
== != === !==
&
^ ^~
|
&&
|| lowest precedence

Operation of SDF
Equality Operators

Precedence Rules of
SDF Operators
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SDF File Example 1

The SDF file example, shown on the next page, is based on the schematic
shown below.

Figure 4 SDF Example Schematic

(DELAYFILE
(SDFVERSION "1.0")
(DESIGN "system")
(DATE "Saturday September 30 08:30:33 PST 1990")
(VENDOR "Yosemite Semiconductor")
(PROGRAM "delay_calc")
(VERSION "1.5")
(DIVIDER /)
(VOLTAGE 5.5:5.0:4.5)
(PROCESS "worst")
(TEMPERATURE 55:85:125)
(TIMESCALE 1ns)
(CELL

(CELLTYPE "system")
(INSTANCE )
(DELAY

(ABSOLUTE
(INTERCONNECT P1/z    B1/C1/i  (.145::.145) (.125::.125))
(INTERCONNECT P1/z    B1/C2/i2 (.135::.135) (.130::.130))
(INTERCONNECT B1/C1/z B1/C2/i1 (.095::.095) (.095::.095))

i1z

P1

i1
i2

z

C2z

C1

i

P2

i

i2
z

i1
i2

z

C2z

C1

ii1

i2
z

z

D1
i

P3

i

B1

B2
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(INTERCONNECT B1/C2/z B2/C1/i  (.145::.145) (.125::.125))
(INTERCONNECT B2/C1/z B2/C2/i1 (.075::.075) (.075::.075))
(INTERCONNECT B2/C2/z P2/i     (.055::.055) (.075::.075))
(INTERCONNECT B2/C2/z D1/i     (.255::.255) (.275::.275))
(INTERCONNECT D1/z    B2/C2/i2 (.155::.155) (.175::.175))
(INTERCONNECT D1/z    P3/i     (.155::.155) (.130::.130))

)
)

)
(CELL

(CELLTYPE "INV")
(INSTANCE B1/C1)
(DELAY

(ABSOLUTE
(IOPATH i  z (.345::.345) (.325::.325) )

)
)

)
(CELL

(CELLTYPE "OR2")
(INSTANCE B1/C2)
(DELAY

(ABSOLUTE
(IOPATH i1  z (.300::.300) (.325::.325) )
(IOPATH i2  z (.300::.300) (.325::.325) )

)
)

)
(CELL

(CELLTYPE "INV")
(INSTANCE B2/C1)
(DELAY

(ABSOLUTE
(IOPATH i  z (.345::.345) (.325::.325) )

)
)

)
(CELL

(CELLTYPE "AND2")
(INSTANCE B2/C2)
(DELAY

(ABSOLUTE
(IOPATH i1  z (.300::.300) (.325::.325) )
(IOPATH i2  z (.300::.300) (.325::.325) )

)
)

)
(CELL

(CELLTYPE "INV")
(INSTANCE D1)
(DELAY

(ABSOLUTE
(IOPATH i  z (.380::.380) (.380::.380) )

)
)

)
)
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SDF File Example 2

This example shows how you can use theCOND construct with the
IOPATH  andTIMINGCHECK  constructs.

(DELAYFILE
(SDFVERSION "2.0")
(DESIGN "top")
(DATE "Feb 21, 1992  11:30:10")
(VENDOR "Cool New Tools")
(PROGRAM "Delay Obfuscator")
(VERSION "v1.0")
(DIVIDER .)
(VOLTAGE :5:)
(PROCESS "typical")
(TEMPERATURE :25:)
(TIMESCALE 1ns)
(CELL

(CELLTYPE "CDS_GEN_FD_P_SD_RB_SB_NO")
(INSTANCE top.ff1)
(DELAY

(ABSOLUTE
(COND (TE == 0 && RB == 1 && SB == 1)

(IOPATH (posedge CP) Q (2:2:2) (3:3:3) )
)

)
(ABSOLUTE

(COND (TE == 0 && RB == 1 && SB == 1)
(IOPATH (posedge CP) QN (4:4:4) (5:5:5) )

)
)
(ABSOLUTE

(COND (TE == 1 && RB == 1 && SB == 1)
(IOPATH (posedge CP) Q (6:6:6) (7:7:7) )

)
)
(ABSOLUTE

(COND (TE == 1 && RB == 1 && SB == 1)
(IOPATH (posedge CP) QN (8:8:8) (9:9:9) )

)
)
(ABSOLUTE

(IOPATH (negedge RB) Q (1:1:1) (1:1:1) ) )
(ABSOLUTE

(IOPATH (negedge RB) QN (1:1:1) (1:1:1) ) )
(ABSOLUTE

(IOPATH (negedge SB) Q (1:1:1) (1:1:1) ) )
(ABSOLUTE

(IOPATH (negedge SB) QN (1:1:1) (1:1:1) ) )
)

(DELAY
(ABSOLUTE

(PORT D (0:0:0) (0:0:0) (5:5:5) ) )



5-4 SDF File Examples

SDF File Example 2

(ABSOLUTE
(PORT CP (0:0:0) (0:0:0) (0:0:0) ) )

(ABSOLUTE
(PORT RB (0:0:0) (0:0:0) (0:0:0) ) )

(ABSOLUTE
(PORT SB (0:0:0) (0:0:0) (0:0:0) ) )

(ABSOLUTE
(PORT TI (0:0:0) (0:0:0) (0:0:0) ) )

(ABSOLUTE
(PORT TE (0:0:0) (0:0:0) (0:0:0) ) )

)
(TIMINGCHECK

(SETUP D (COND D_ENABLE (posedge CP)) (1:1:1) )
(HOLD D (COND D_ENABLE (posedge CP)) (1:1:1) )
(SETUPHOLD TI (COND TI_ENABLE (posedge CP)) (1:1:1) (1:1:1))
(WIDTH (COND ENABLE (posedge CP)) (1:1:1) )
(WIDTH (COND ENABLE (negedge CP)) (1:1:1) )
(WIDTH (negedge SB) (1:1:1) )
(WIDTH (negedge RB) (1:1:1) )
(RECOVERY (posedge RB) (COND SB (negedge CP)) (1:1:1) )
(RECOVERY (posedge SB) (COND RB (negedge CP)) (1:1:1) )

)
)

)
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SDF File Example 3

This example shows how State Dependent Path Delays can be annotated
usingCOND andIOPATH  constructs.

(DELAYFILE
(SDFVERSION "2.0")
(DESIGN "top")
(DATE "Nov 25, 1991 17:25:18")
(VENDOR "Slick Trick Systems")
(PROGRAM "Viability Tester")
(VERSION "v3.0")
(DIVIDER .)
(VOLTAGE :5:)
(PROCESS "typical")
(TEMPERATURE :25:)
(TIMESCALE 1ns)
(CELL

(CELLTYPE "XOR2")
(INSTANCE top.x1)
(DELAY

(INCREMENT
(COND i1 (IOPATH i2 o1 (2:2:2) (2:2:2) ) )

)
(INCREMENT

(COND i2 (IOPATH i1 o1 (2:2:2) (2:2:2) ) )
)
(INCREMENT

(COND ~i1 (IOPATH i2 o1 (3:3:3) (3:3:3) ) )
)
(INCREMENT

(COND ~i2 (IOPATH i1 o1 (3:3:3) (3:3:3) ) )
)

)
)

)
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SDF File Example 4

This example shows how to forward annotate timing constraints. The key
to specifying SDF constraints is to identify INSTANCE-PINS of library
cells. In the example shown below I2 is an instance and H01 is a PIN (port)
on that instance.

(DELAYFILE
(SDFVERSION "3.0")
(DESIGN "testchip")
(DATE "Dec 17, 1991 14:49:48")
(VENDOR "Big Chips Inc.")
(PROGRAM "Chip Analyzer")
(VERSION "1.3b")
(DIVIDER .)
(VOLTAGE :3.8: )
(PROCESS "worst")
(TEMPERATURE : 37:)
(TIMESCALE 10ps)
(CELL

(CELLTYPE "XOR")
(INSTANCE )
(TIMINGENV

(PATHCONSTRAINT I2.H01 I1.N01 (989:1269:1269) (989:1269:1269)
)

(PATHCONSTRAINT I2.H01 I3.N01 (904:1087:1087) (904:1087:1087)
)

)
)

)
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Introduction

The delay model provides a guideline for using SDF in ASIC application
tools.  All constructs in SDF should be directly applicable to the delay
model.  ASIC timing is divided into forward annotation and back-
annotation.  Although SDF supports both timing concepts, this section
concentrates on ASIC timing back-annotation model.  A future release of
SDF will provide an abstract model for forward annotation.

The following section defines the delay model and provides rules that
should be adhered to to ensure proper interpretation and usage of SDF
constructs.
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Figure 5 The Delay Model

The delay model consists the following timing objects:

1. Interconnect delay (INT), represented by theINTERCONNECT
delay construct in SDF.

2. Path delay (PD), represented byIOPATH  delay construct in SDF.

3. State-dependent path delay (SDPD), represented byCOND keyword
in SDF.

4. Port delay (IPD), represented byPORT delay construct in SDF.

5. Device delay (DEV), represented byDEVICE  construct in SDF.
Note when specified with a cell output port, this timing object is a
degenerate path delay; when specified with a primitive instance, this
timing object is its intrinsic delay.

6. Path pulse (PP), represented byPATHPULSE construct in SDF.

7. Timing checks (TC), represented with several keywords in SDF
depending on the type of the timing checks.

SDPD

SDPD

PD+PP

o1 o1

o2o2

o3

i1

i2
i1

i2

i3

INT

INT

Cell WCell Y

TC

Gate Z

INT/IPD

INT/IPD
DEV

TC

PD

PDPD

Timing Objects
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1. Path delay is described between any input (or bidirectional) port to
any output (or bidirectional) port in the same cell.

2. Multiple path delays can be defined for any output (or bidirectional)
port.

3. Multiple path delays can be defined between any pair of ports only
by using state dependent delays.

4. Path delay can have up to twelve transition states with twelve
different delay values.

5. Negative timing values for absolute input-output path, port, net,
device and interconnect delays may default to zero in certain
application tools.

6. Interconnect delay is described between any output (bidirectional)
port of a cell to any input (bidirectional) port of any cell.

7. Multiple interconnect delays from different sources can be described
for any input (bidirectional) port, destination port.

8. Depending on the type of the timing check, it can be applied to a
single or a pair of ports.

9. Timing checks are allowed from an output port to another output
port.

10. Timing checks are applied after the interconnect delays are applied.

11. Negative timing check limit values are allowed only for the SDF
SETUPHOLD, RECREM  andNOCHANGE  constructs.  Some
application tools may use the negative values while others may
compile them as zero values.

12. INTERCONNECT  delay between a source and a destination signal
cannot be used ifPORT delay is specified for the same destination
signal.

13. Similarly,PORT delay for a destination signal cannot be used if an
INTERCONNECT  delay is specified between a source and the same
destination signal.

14. IOPATH  delay cannot be used if aDEVICE  delay is specified for the
same output port within the same cell.

15. Similarly,DEVICE  delay cannot be used if anIOPATH  delay is
specified between an input port and the same output port within the
same cell.

16. All timing objects using the internal nodes may be ignored by
application tools that have no concept of the internal nodes.

Rules
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17. For the same timing object, delay annotation is executed in the
sequential order as encountered in a single SDF file.
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negative values 6-3

timing constraints, see constraints
timing environment

formal syntax description 4-6
timing models

supported by SDF2-7
TIMINGCHECK keyword

syntax 4-5
TIMINGENV keyword

syntax 4-5

U
uncertainty region

in WAVEFORM construct 3-44

V
VARIABLE

notation in syntax description 4-2
VENDOR keyword

example 3-4
syntax 4-4

VERSION keyword
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example 3-5
syntax 4-4

VITAL
annotation 3-20

VOLTAGE keyword
example 3-6
syntax 4-4

W
WAVEFORM keyword

example 3-44, 3-45
syntax 4-6

WIDTH keyword
example 3-34
syntax 4-6

wildcard instance specification 3-10
wire path delays 3-22


