
UVM Register Abstraction
Layer Generator User Guide
R-2020.12, December 2020

Verification ContinuumTM

ii

Copyright Notice and Proprietary Information
© 2020 Synopsys, Inc. All rights reserved. This Synopsys software and all associated documentation are proprietary to Synopsys,
Inc. and may only be used pursuant to the terms and conditions of a written license agreement with Synopsys, Inc. All other use,
reproduction, modification, or distribution of the Synopsys software or the associated documentation is strictly prohibited.

Third-Party Software Notices
VCS® and configurations of VCS includes or is bundled with software licensed to Synopsys under free or open-source
licenses. For additional information regarding Synopsys's use of free and open-source software, refer to the
third_party_notices.txt file included within the <install_path>/doc directory of the installed VCS software.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader's responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at
http://www.synopsys.com/company/legal/trademarks-brands.html.
All other product or company names may be trademarks of their respective owners.

Free and Open-Source Software Licensing Notices
If applicable, Free and Open-Source Software (FOSS) licensing notices are available in the product installation.

Third-Party Links
Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse
and is not responsible for such websites and their practices, including privacy practices, availability, and content.

www.synopsys.com

UVM Register Abstraction Layer Generator User GuideFeedback

Contents

1. Code Generation

Generating a RAL Model . 1-1
Options. 1-2
Embedding Enums in Field Classes 1-4
Splitting Model into Separate Files . 1-5
Splitting Model into Separate Packages 1-8
Generating Model for Top-Level Block Only 1-10
Prunable Register Model . 1-12

Understanding the Generated Model . 1-15
Fields . 1-16
Registers . 1-16
Arrays. 1-17
Register Files . 1-18
Virtual Registers. 1-19
Memories . 1-21
Blocks . 1-22
Systems . 1-25

iv

UVM Register Abstraction Layer Generator User Guide Feedback

Inserting User-Defined Code Inside the Generated RAL Model Classes
1-27

2. Register and Memory Specification

Systems, Blocks, Registers, and Fields 2-2

Reusability and Composition . 2-3

Naming . 2-5

Hierarchical Descriptions and Composition 2-9

Arrays and Register Files . 2-11

Support for Different Reset Values in Register Arrays for RALF 2-13

Virtual Fields and Virtual Registers . 2-14

Multiple Physical Interfaces . 2-16

Special Registers . 2-19
Indirect Indexed Registers . 2-20
Unimplemented Registers . 2-25
Aliased Registers . 2-27
Banked Registers. 2-33
Shared Registers . 2-38
Sparse Register Arrays . 2-39
Modeling Non-Standard Behavior of Registers 2-41
Accessing Registers Based on Index in a regfile. 2-42

3. Generated Back-doors

Arrays . 3-3

UVM Register Abstraction Layer Generator User GuideFeedback

%d Format Specifier . 3-4
[%d] Format Specifier . 3-5
[%d:%d] Format Specifier . 3-6
[%g] Format Specifier . 3-8

Backdoor Support for VHDL or Mixed Language Designs 3-10

Scoping Backdoor Classes to a SV Package 3-13

Target Structures . 3-16

Support for Value Inversion in Backdoor Code 3-23

Support for Field Association with Register Backdoor Specification 3-24

Support for Register Array Index in Field Paths 3-31

Support for Active Monitoring Logic . 3-34
Reserved RALF Keywords in Backdoor Path 3-36

4. Functional Coverage Model

Predefined Functional Coverage Models 4-3
Register Bits. 4-4
Address Map . 4-5
Field Values . 4-6

RALF Cover Attribute . 4-11

5. Randomizing Field Values

6. Generating RALF and UVM Register Model from IP-XACT

Definition of IP-XACT Schema . 6-2

vi

UVM Register Abstraction Layer Generator User Guide Feedback

RALF File Description Mechanism . 6-2

Supported IP-XACT Schema . 6-5

Generic RALF Features and IP-XACT Mapping 6-5
Constraints. 6-11
Access Types. 6-13
Reserved and Parameters Attributes 6-17
Reset/Mask for Register . 6-17
Volatile Construct . 6-19

Vendor Extensions . 6-22

Limitations of IP-XACT to RALF Feature Mapping 6-32

7. UVM Register C++ Interface

C++ Register Model . 7-3

Instantiating the Register Model . 7-5

Retrieving IDs of All the Registers in a Block/System 7-6

Co-Simulation Execution Timeline . 7-7

Appendix A. RALF Syntax

Grammar Notation . A-2
Reserved Words . A-2

Useful Tcl Commands . A-3
Tcl Syntax and FAQ . A-4

RALF Construct Summary . A-6
field . A-6

UVM Register Abstraction Layer Generator User GuideFeedback

register . A-11
regfile . A-18
memory . A-23
virtual register . A-26
block. A-28
system . A-38

Appendix B. Limitations in Code Generation for UVM Register Model

Fields . B-1
Volatility . B-1
has_reset . B-2
individually_accessible. B-2
soft_reset . B-2
set_compare() . B-2

Memories . B-3
Coverage . B-3

Registers . B-3
UVM_REG_FIFOs . B-3
REGISTER CALLBACKS . B-3

viii

UVM Register Abstraction Layer Generator User Guide Feedback

 1-1

Code GenerationFeedback

1
Code Generation 1

Once a description of available registers and memories in a design
is available, ralgen can automatically generate the UVM RAL
abstraction model for these registers and memories. Test cases,
firmware, device drivers, and DUT configuration code use this model
to access the registers and memories through an object-oriented
abstraction layer. Predefined tests also use this model to verify the
functional correctness of the registers and memories.

This section consists of the following subsections:

• “Generating a RAL Model”

• “Understanding the Generated Model”

• “Inserting the User-Defined Code Inside the Generated RAL
Model Classes”

• “Specifying Map Name in Single Domain Blocks”

1-2

Code Generation Feedback

Generating a RAL Model

To generate a RAL model, use the following command:

% ralgen [options] -t topname -I dir -uvm {filename.ralf}

Where:

-t topname

Specifies the name of the top-level block or system description in
the RALF file that entirely describes the design under verification.

-uvm

Specifies UVM as the implementation methodology for the
generated code. The RAL model for the entire design is generated
in a file named ral_topname.sv in the current working directory.

-I dir

Specifies an optional list of directories that ralgen searches for
sourced Tcl files.

filename.ralf

Specifies the name of the files containing the RALF description.
Although the .ralf extension is not required, Synopsys
recommends you to specify it. However, for multiple files one top-
level RALF file is specified that should include all the other files
through the include Tcl option. For example, in the top RALF
file, source bottom.ralf should be present.

 1-3

Code GenerationFeedback

Options

The following options are available:

-all_fields_rand

Allows you to configure all the writable fields as rand
(is_rand_bit is set to 1) without requiring the constraint
block to be specified. The generated code only marks fields, which
have constraints defined with them as rand by default.

-b

Generates the back-door access code for those registers and
memories where a complete hdl_path is specified.

-B, gen_byte_addr

Generates RAL model with byte-level address granularity.

-c a

Generates the “Address Map” functional coverage model. You
may specify the -c option multiple times.

-c b

Generate the “Register Bits” functional coverage model. You may
specify the -c option multiple times.

-c f

Generates the “Field Values” functional coverage model. You may
specify the -c option multiple times.

1-4

Code Generation Feedback

-c s

Generates separate bins for read-only bits to read both 1 and 0
for read-only registers for ralgen-generated bit-level coverage.
Specifying the -c b option alongside the -c s option results in
an error.

-e

Generates empty constraint blocks for every abstract class.

-f <filename>

Specifies all ralgen options within a file.

-flds_out_reg all | none | no_uniq

Controls the field handle generation in blocks.

all - Generates all field handles in blocks (same as not providing
-flds_all_reg).

none - Generates no field handles in blocks.

no_uniq - Generates no field handles for uniquely named fields
in blocks.

-gen_html

Generates the RAL model and its HTML UVM document. Its
related files are dumped in the ral_top_path_name_doc
directory. An error appears, if this option is specified without the
-uvm option.

 1-5

Code GenerationFeedback

-no_vif_self_inst

Omits the generation of the initial block inside the interface for self
registering. This option can only be used with the
-gen_vif_bkdr option.

-top_macro <string_which_overrides_default_macro>

Allows you to use a different macro instead of name_TOP_PATH
to specify the absolute path to the instance of the DUT that
corresponds to the RAL model.

Embedding enum in Field Classes

If an enum is present in a field, ralgen creates a class containing
that enum, but that class is not used and the enum is not embedded
in the field class.

ralgen is enhanced and the -embed_enum_in_flds option is
provided to allow embedding an enum in the field class itself. If
this option is used, ralgen embeds an enum in a class extending
from the uvm_reg_field class and creates the corresponding
field instance using this uvm_reg_field extension class.

1-6

Code Generation Feedback

For example, consider the following RALF code snippet:

block b1 {
bytes 1;
register r {

bytes 1;
field WDT_EN @'h5 {

bits 1;
reset 'h0;
access rw;
enum { ENABLE = 1, DISABLE = 0 };

}

}
}

In the code snippet, the field class is extended from the
uvm_reg_field class and used in a register as follows:

class ral_fld_b1_r_WDT_EN extends uvm_reg_field;
`uvm_object_utils(ral_fld_b1_r_WDT_EN)

function new(string name = "WDT_EN");
super.new(name);

endfunction : new
typedef enum bit[0:0] {

ENABLE = 1,
DISABLE = 0

} WDT_EN_values;
endclass : ral_fld_b1_r_WDT_EN

class ral_reg_b1_r extends uvm_reg;
rand ral_fld_b1_r_WDT_EN WDT_EN;

function new(string name = "b1_r");
 super.new(name, 8,build_coverage(UVM_NO_COVERAGE));
endfunction: new

virtual function void build();
this.WDT_EN =

 1-7

Code GenerationFeedback

ral_fld_b1_r_WDT_EN::type_id::create("WDT_EN",,get_full_na
me());

this.WDT_EN.configure(this, 1, 5, "RW", 0, 1'h0, 1, 1,
1);
endfunction: build

`uvm_object_utils(ral_reg_b1_r)

endclass : ral_reg_b1_r

Splitting the Model Into Separate Files

Instead of generating a complete model into a single file named
ral_topblkname.sv, you can optionally split the generated
register model into individual files, one per block. The individual files
can then be used in the verification environment of the individual
blocks.

Command-Line Option

-F

When specified, the option saves the generated model in separate
files.

Specification

For the top-level block, it instantiates each sub-block, which is
specified in the input RALF file(s). The corresponding register
abstraction model is generated in a separate file named
ral_blkname.sv.

The file contains all the class declarations implied by the block
specification. This includes register type, register file type, and the
block type classes.

1-8

Code Generation Feedback

Register and register file types specified outside of a block
specification is surrounded by pre-processor guard statements.

The ̀ include statements include the files containing the generated
model for the blocks instantiated in the block for the current file are
generated at the top of the block model file. The entire content of the
file is embedded in a pre-processor guard.

Example

Consider the following (partial) RALF file:

register R0 {…};
block B1 {
 register R0;
 register R1 {…};
}
block B2 {
 register R0;
 register R1 {…};
}
system sys {
bytes 16;
block B1;
block B2
}
ralgen -uvm -t sys sys.ralf -F

It generates the required (partial) class declarations in the following
files:

 1-9

Code GenerationFeedback

ral_B1.sv:

`ifndef RAL_B1__SV
`define RAL_B1__SV

 `ifndef RAL_R0__TYP
 `define RAL_R0__TYP
 class ral_R0 …;
 `endif

 class ral_B1_R1 …;

 class ral_B1 …;
`endif
ral_B2.sv:
`ifndef RAL_B2__SV
`define RAL_B2__SV

 `include "ral_B1.sv"

 `ifndef RAL_R0__TYP
 `define RAL_R0__TYP
 class ral_R0 …;
 `endif

 class ral_B2_R1 …;

 class ral_B2 …;
`endif

1-10

Code Generation Feedback

Splitting the Model into Separate Packages

Instead of generating a complete model into a single file named
ral_topblkname.sv, the generated register model can be
optionally split into individual files, one per block, with all block-
related type declarations encapsulated in a package. The individual
files can then be compiled separately and used in the verification
environment of the individual blocks.

Command-Line Option

-P

When specified, the option saves the generated model in separate
packages and in separate files.

Specification

• A warning appears if -F option is specified with the -P option.

• The -P option takes the precedence.

• For the top-level block, and each sub-block it instantiates,
specified in the input RALF file(s), the corresponding register
abstraction model is generated in a separate packaged named
ral_blkname_pkg in a separate file named
ral_blkname_pkg.sv.

• The package contains all the class declarations implied by the
block specification. This includes register type, register file type,
and the block type classes.

• Register and register file types specified outside of a block
specification is included in the package without special treatment.

 1-11

Code GenerationFeedback

• Import statements to import the declarations from the packages
containing the generated model for the blocks instantiated in the
block for the current package are generated at the top of the
package.

• The entire content of the file is embedded in a pre-processor
guard.

• The list of vlogan commands required to compile the packages
in the correct order is generated into the
ral_topblkname.compile file name and is duplicated on the
standard output.

Example

Consider the following (partial) RALF file:

register R0 {…};
block B1 {
 register R0;
 register R1 {…};
}
block B2 {
 register R0;
 register R1 {…};
}
system sys {
bytes 16;

block B1;
block B2;

}
ralgen -uvm -t sys sys.ralf -P

Generates the required (partial) class and package declarations in
the following files:

ral_B1_pkg.sv:

1-12

Code Generation Feedback

`ifndef RAL_B1_PKG__SV
`define RAL_B1_PKG__SV

package ral_B1_pkg;
 import uvm_pkg::*;

 class ral_R0 …;
 class ral_B1_R1 …;
 class ral_B1 …;
endpackage

`endif
ral_B2_pkg.sv:
`ifndef RAL_B2_PKG__SV
`define RAL_B2_PKG__SV

package ral_B2_pkg;
 import uvm_pkg::*;
 import ral_B1_pkg::*;

 class ral_R0 …;
 class ral_B2_R1 …;
 class ral_B2 …;
endpackage

`endif
ral_B2.compile:
vlogan -sverilog ral_B1_pkg.sv
vlogan -sverilog ral_B2_pkg.sv

 1-13

Code GenerationFeedback

Generating the Model for Top-Level Block Only

Instead of generating a complete model which includes all the blocks
instantiated in the top-most block, only the model for the top-most
block can be optionally generated. It is assumed that the register
models for the instantiated blocks are previously generated. This
allows the SoC team to generate the register model for the SoC only
and to inherit the register models for the instantiated IPs from the IP-
level verification environments.

Note:Individually generated register models must use the same
packaging approach to be compatible. For example, the model
for a block generated without a package (using the -T option) is
not compatible with the model for a block generated within a
package (using the -P option).

If you need to generate a register model for multiple blocks, each is
generated through a separate invocations of ralgen with each
block specified as the topmost block in turn.

Command-Line Option

-T

When specified, the option generates the register model for the
specified topmost block.

Specification

• It is necessary to specify the -F option or the -P option when
specifying the -T option.

• Only the file corresponding to the specified topmost block is
generated.

1-14

Code Generation Feedback

Example

Consider the following (partial) RALF file:

register R0 {…};
block slave1 {
 register R0;
 register R1 {…};
}

block slave2 {
 register R0;
 register R1 {…};
}
system sys {
bytes 16;

block slave1;
block slave2;

}

It generates the required (partial) class and package declarations in
the following files:

ralgen -uvm -t sys slave_two_block.ralf -F -T
will generate ral_sys.sv

ralgen -uvm -t slave1 slave_two_block.ralf -F -T
will generate ral_slave1.sv

ralgen -uvm -t slave2 slave_two_block.ralf -F -T
will generate ral_slave2.sv

 1-15

Code GenerationFeedback

Prunable Register Model

Large SoCs contain multiple thousands of registers. Depending on
the way the registers are modeled, this may cause the generation of
multiple thousands of classes declarations and the instantiation of
several tens of thousands of class instances.

Most SoC-level tests do not need a complete register model. They
only need the portions of the model that are used by the test case.
To reduce compile-time and run-time resources, it should prune the
register model of all unnecessary block-level register models.

Command-Line Option

+prunable

When specified, the option helps the generated model to include
directives to optionally prune the register model at compile time.

Specification

• It is necessary to specify the -F option or the -P option when
specifying the +prunable option.

• For each block instantiated in the register model contained in the
generated file, the corresponding ̀ include or import directive
is embedded in a pre-processor guard.

• For each block instantiated in the register model contained in the
generated file, the corresponding block instance class property is
embedded in the same pre-processor guard that guards the
`include or import statement for that block.

1-16

Code Generation Feedback

• Any statement referring to a block instance class property is
embedded in the same pre-processor guard that guards the
`include or import statement for that block.

• The pre-processor symbol guarding the `include or import
statement and the class property for an instantiated block is
named RAL_PRUNE_BLKNAME.

• By default, none of the pre-processor guard symbols is defined.

Example

Consider the following (partial) RALF file:

register R0 {…};
block B1 {
 register R0;
 register R1 {…};
}

block B2 {
 register R0;
 register R1 {…};

}
system sys {
bytes 16;

block B1;
block B2;

}
ralgen -uvm -t sys sys.ralf +prunable -P

It generates the required (partial) prunable class and package
declarations in the following files:

 1-17

Code GenerationFeedback

ral_B1_pkg.sv:

`ifndef RAL_B1_PKG__SV
`define RAL_B1_PKG__SV

package ral_B1_pkg;
 import uvm_pkg::*;

 class ral_R0 …;
 class ral_B1_R1 …;
 class ral_B1 …;
endpackage

`endif
ral_B2_pkg.sv:
`ifndef RAL_B2_PKG__SV
`define RAL_B2_PKG__SV

package ral_B2_pkg;
 import uvm_pkg::*;
 `ifndef RAL_PRUNE_B1
 import ral_B1_pkg::*;
 `endif

 class ral_R0 …;
 class ral_B2_R1 …;
 class ral_B2 extends uvm_reg;
 rand ral_R0 R0;
 rand ral_B2_R1 R2;
 `ifndef RAL_PRUNE_B1
 rand ral_B1 b1;
 `endif
 ...
 function void build();
 `ifndef RAL_PRUNE_B1
 b1 = ...;
 `endif
 endfunction
 endclass
endpackage
`endif

1-18

Code Generation Feedback

Understanding the Generated Model

The generated abstraction model is a function of the RALF
description used to generate it. Therefore, understanding how the
generation process works helps you to use the generated model
based on the knowledge of the RALF description.

The generated abstraction model is described using a bottom-up
approach, in the order in which the classes are generated and then
compiled. If you prefer to read a top-down description, simply read
the following sections (“Fields” , “Registers” , “Register Files” ,
“Virtual Registers” , “Memories” , “Blocks” , and “Systems”) in the
reverse order.

Note:
By default, the data in the register or memory access routines is
two-state data. The UVM_REG_4STATE_DATA macro allows you
to get the four-state data in the register or memory access routines
and controls the definition of the uvm_reg_data_t data type.

Fields

No abstraction class is generated for a field definition. Instead, each
field is modeled by an instance of the uvm_ral_field class.

The instance of that class is stored in a property of the class
modeling the register that instantiates it and the block that
instantiates the register.

 1-19

Code GenerationFeedback

Registers

An abstraction class is generated for each register definition:

• For each independently defined register named regnam, there is
a class named ral_reg_regnam

• For each register named regnam defined inline in the
specification of a block named blknam, there is a class named
ral_reg_blknam_regnam

• For each register named regnam defined inline in the
specification of a register file named filnam in a block named
blknam, there is a class named
ral_reg_blknam_filnam_regnam

In all cases, the register abstraction class is derived from the
uvm_reg class.

All virtual methods defined in the uvm_reg class are overloaded in
the register model class. Each virtual method is overloaded to
implement the register-specific behavior of the register as defined in
the RALF description. No new methods are added to the register
abstraction class.

As shown in Example 1-1, the register abstraction class contains a
class property for each field it contains. The name of the property is
the name of the field. There are no properties for unused or reserved
fields.

1-20

Code Generation Feedback

Example 1-1 Register Model Class for Register in Example A-5
class ral_reg_CTRL extends uvm_ral_reg;
 uvm_ral_field TXE;
 uvm_ral_field RXE;
 uvm_ral_field PAR;
 uvm_ral_field DTR;
 uvm_ral_field CTS;
 ...
endclass: ral_reg_CTRL

Instances of this class are found in the block abstraction class for the
blocks instantiating this register.

Arrays

If a register contains any field array, the class property for the field
array is declared as a fixed sized array in the corresponding register
abstraction class. Consider the following example:

Example 1-2 Array Specifications and Corresponding Model
register r {

 bytes 1;
field f[8] {
bits 1;
 }
}

Its corresponding abstraction model is as follows:

class ral_reg_b_r extends uvm_ral_reg;
 rand uvm_ral_field f[8];
 ...
endclass: ral_reg_b_r

 1-21

Code GenerationFeedback

Register Files

An abstraction class is generated for each register file definition. For
each register file named filnam defined inline in the specification of
a block named blknam, there is a class named
ral_regfile_blknam_filnam. The register abstraction class is
not derived from the uvm_blk_filnam base class and is a
container for the registers instantiated in the register file.

The register file container class contains a class property for each
register it contains. For example:

Example 1-3 Register File Specification and Corresponding Model
block dma_ctrl {
 regfile chan {
 register src {
 field addr { ... }
 }
 register dst {
 field addr { ... }
 }
 register count {
 field n_bytes { ... }
 }
 register ctrl {
 field TXE { ... }
 field BSY { ... }
 }
 }
}

Its corresponding abstraction model is as follows:

1-22

Code Generation Feedback

class ral_regfile_dma_ctrl_chan;
 ral_reg_dma_ctrl_chan_src src;
 uvm_ral_field src_addr;

 ral_reg_dma_ctrl_chan_dst dst;
 uvm_ral_field dst_addr;

 ral_reg_dma_ctrl_chan_count count;
 uvm_ral_field n_bytes, count_n_bytes;
 uvm_ral_field TXE, ctrl_TXE;
 uvm_ral_field BSY, ctrl_BSY;
 ...
endclass: ral_reg_dma_ctrl_chan

Instances (usually arrays of instances) of this class are found in the
block abstraction class for the blocks instantiating this register file.

Virtual Registers

An abstraction class is generated for each virtual register array
definition. For each independently-defined virtual register array
named vregnam, there is a class named ral_vreg_vregnam. For
each virtual register array named vregnam defined inline in the
specification of a block named blknam, there is a class named
ral_vreg_blknam_vregnam. In both cases, the virtual register
array abstraction class is derived from the uvm_vreg class. A single
abstraction class is used for all virtual registers in the array.

All virtual methods defined in the uvm_ral_vreg class are
overloaded in the virtual register array abstraction class. Each virtual
method is overloaded to implement the register-specific behavior of
the virtual register array as defined in the RALF description. No new
methods are added to the virtual register array abstraction class.

 1-23

Code GenerationFeedback

As shown in Example 1-4, the virtual register array abstraction class
contains a class property for each virtual field it contains. The name
of the property is the name of the field. There are no properties for
unused or reserved fields, and unlike register arrays, a single
instance of the virtual register array abstraction class is used to
model the complete virtual register array.

Example 1-4 Virtual Register Abstraction Class
block blk1 {
 memory ram0 { ... }

 virtual register dma[256] ram0@0x0000 {
 field len { ... }
 field bfrptr { ... }
 field ok { ... }
 }
}

Its corresponding abstraction model is as follows:

class ral_vreg_blk1_dma extends uvm_ral_vreg;
 uvm_ral_vfield len;
 uvm_ral_vfield bfrptr;
 uvm_ral_vfield ok;
 ...
endclass: ral_vreg_blk1_dma

class ral_block_blk1 extends uvm_reg_block;
 uvm_ral_mem ram0;
 ral_vreg_blk1_dma dma;
 ...
endclass: ral_block_blk1

A single instance (not an array of instance) of this class is found in
the block abstraction class for the blocks instantiating a virtual
register array.

1-24

Code Generation Feedback

Memories

An abstraction class is generated for each memory definition. For
each independently defined memory named memnam, there is a
class named ral_mem_memnam. For each memory named memnam
defined inline in the specification of a block named blknam, there is
a class named ral_mem_blknam_memnam.

In both cases, the memory abstraction class is derived from the
uvm_ral_mem class.

All virtual methods defined in the uvm_ral_mem class are
overloaded in the memory abstraction class. Each virtual method is
overloaded to implement the memory-specific behavior of the
memory as defined in the RALF description. No new methods are
added to the memory abstraction class.

As shown in Example 1-5, the memory abstraction class contains no
additional class properties.

Example 1-5 Memory Abstraction Class for Memory in Example A-10
class ral_mem_ROM extends uvm_ral_mem;
 ...
endclass: ral_mem_ROM

Instances of this class are found in the block abstraction class for the
blocks instantiating this memory.

 1-25

Code GenerationFeedback

Blocks

An abstraction class is generated for each block definition. For each
independently defined block named blknam, there is a class named
ral_block_blknam. For each block named blknam defined inline
in the specification of a system named sysnam, there is a class
named ral_block_sysnam_blknam. In both cases, the block
abstraction class is derived from the uvm_reg_block class.

All virtual methods defined in the uvm_reg_block class are
overloaded in the block abstraction class. Each virtual method is
overloaded to implement the block-specific behavior of the block as
defined in the RALF description. No new methods are added to the
block abstraction class.

As shown in Example 1-6 and Example 1-7, the block abstraction
class contains a class property for each register and register file it
contains. The name of the register or register file property is the
name of the register or file. The block abstraction class also contains
one or two class properties for each field it contains. The name of
each field property is the name of the field (if unique within the
register) and the name of the register concatenated with the name of
the field, respectively. There are no properties for unused or
reserved fields.

In certain situations, it may be necessary to:

• Not generate any field properties outside the register class.

or

• Generate field properties with register name pre-fixed to field
name, while leaving out field properties with unique names.

1-26

Code Generation Feedback

You can control the field generation using the following command-
line option:

-flds_out_reg all | none |no_uniq

where,

all - This is default. It implies the current behavior.

none - This specifies that no field handles are generated outside
the register class.

no_uniq - This specifies that no field handles are generated for
unique names outside the register class.

Important:
It is preferable that field names be unique across blocks.
Therefore, each field has a property with the same name in the
block abstraction class that instantiates them. If you move the field
to another physical register, you can use this uniquely-named field
property to reduce testbench maintenance. If you use the name
that is prefixed with the register name, you must modify
testbenches if the field is relocated to another physical register.

Example 1-6 Block Abstraction Class for Block in Example A-11
class ral_block_uart extends uvm_reg_block;
 ral_reg_CTRL CTRL;
 uvm_ral_field TXE, CTRL_TXE;
 uvm_ral_field RXE, CTRL_RXE;
 uvm_ral_field PAR, CTRL_PAR;
 uvm_ral_field DTR, CTRL_DTR;
 uvm_ral_field CTS, CTRL_CTS;

 ral_mem_tx_bfr tx_bfr;
 ...
endclass: ral_block_uart

 1-27

Code GenerationFeedback

Example 1-7 Block Abstraction Class for Block in Example A-13
ral_block_bridge extends uvm_reg_block;
 ral_reg_flags pci_flags;
 uvm_ral_field pci_flags_cts;
 uvm_ral_field pci_flags_dtr;

 ral_reg_data_xfer to_ahb;
 uvm_ral_field to_ahb_data;

 ral_reg_data_xfer frm_ahb;
 uvm_ral_field frm_ahb_data;

 ral_reg_flags ahb_flags;
 uvm_ral_field ahb_flags_cts;
 uvm_ral_field ahb_flags_dtr;

 ral_reg_data_xfer to_pci;
 uvm_ral_field to_pci_data;

 ral_reg_data_xfer frm_pci;
 uvm_ral_field frm_pci_data;
 ...
endclass: ral_block_bridge

Instances of this class are found in the system model class for the
systems instantiating this block.

Arrays

If a block contains a register array or register file array, the class
property for the register array or register file array is declared as a
fixed-sized array to the corresponding register abstraction class or
the register file container class. Similarly, the field properties for the
fields contained in the register array are declared as a fixed-sized
array of uvm_ral_field classes.

1-28

Code Generation Feedback

Example 1-8 Array Specifications and Corresponding Model
block b1 {
 register r1[32] {
 field f1 { ... }
 }
 regfile rf[16] {
 register r1 {
 field f1 { ... }
 }
 register r2[4] {
 field f1 { ... };
 }
 }
}

Its corresponding abstraction model is as follows:

class ral_regfile_b1_rf;
 ral_reg_b1_rf_r1 r1;
 uvm_ral_field r1_f1;

 ral_reg_b1_rf_r2 r2[4];
 uvm_ral_field f2_f1[4];
 ...
endclass: ral_regfile_b1_rf

class ral_block_b1 extends uvm_reg_block;
 ral_reg_b1_r1 r1[32];
 uvm_ral_field f1[32], r1_f1[32];

 ral_regfile_b1_rf rf[16]
 ...
endclass: ral_block_b1

 1-29

Code GenerationFeedback

Systems

An abstraction class is generated for each system definition. For
each independently defined system named sysnam, there is a class
named ral_sys_sysnam. For each subsystem named subnam
defined inline in the specification of a system named sysnam, there
is a class named ral_sys_sysnam_subnam.

In both cases, the system abstraction class is derived from the
uvm_reg_block class as in the case of the abstraction classes
generated for each 'block' definition (for details, see
uvm_reg_block in the UVM1.0 Reference Guide).

All virtual methods defined in the uvm_reg_block class are
overloaded in the system abstraction class. Each virtual method is
overloaded to implement the system-specific behavior of the system
as defined in the RALF description. No new methods are added to
the system abstraction class.

As shown in Example 1-9 and Example 1-10, the system abstraction
class contains a class property for each block and subsystem it
contains. The name of the block or subsystem property is the name
of the block or system. For blocks with multiple domains, the name
of the blocks and subsystems are also available prefixed with the
domain name.

Example 1-9 System Abstraction Class for Example A-14
class ral_sys_SoC extends uvm_reg_block;
 ral_block_uart uart0;
 ral_block_uart uart1;
 ...
endclass: ral_sys_SoC

1-30

Code Generation Feedback

Example 1-10 System Abstraction Class for Example A-15
class ral_sys_SoC extends uvm_reg_block;
 ral_block_uart uart0, ahb_uart0;
 ral_block_uart uart1, ahb_uart1,
 ral_block_bridge ahb_br;
 ral_block_bridge pci_br;
 ...
endclass: ral_sys_SoC

Inserting the User-Defined Code Inside the Generated
RAL Model Classes

You can insert the user-defined code to the generated RAL model
classes using the user_code construct, as follows:

user_code lang=sv [(new)]
{
 // Any kind/syntax of user code can be added here
}

If the optional (new) argument is specified, it indicates that
user_code is appended/inlined to/in the corresponding (RAL
Model) class body of the build method. In case of a virtual register,
user_code is inlined in the virtual register constructor.

If the new argument is not specified, user_code is not inlined in the
build method code. By default, it is located outside the constructor
body (but inside the class), thus, opening up options of adding new
data members, functions, or task definitions and so on in the
generated RAL model classes.

You can also use the user_code construct as an optional property
in the definition or specification of a RALF register, virtual register,
memory, regfile, block, or system as shown in the example below.

 1-31

Code GenerationFeedback

Note:
You can specify more than one RALF user_code in the definition
or specification of a RALF register, virtual register, memory,
regfile, block, or system. The contents are concatenated in the
generated RAL model class in the same sequence as their
corresponding occurrence in the RALF file.

Example 1-11 RALF Description With User Code
block b {
 bytes 1
 user_code lang=SV {
 // Any block level code can come here.
 }
 register r {
 bytes 1
 field f
 user_code lang=SV (new) {
 // Any register level build method code can come here.
 }
 }
}

This example generates the following RAL classes with user_code
inlined appropriately:

class ral_reg_b_r extends uvm_reg;
 rand uvm_reg_field f;
 function new(string name = "b_r");
 super.new(name,
8,build_coverage(UVM_NO_COVERAGE));
 endfunction: new
 virtual function void build();
this.f =
uvm_reg_field::type_id::create("f",,get_full_name());
 this.f.configure(this, 1, 0, "RW", 0, 1'h0, 0, 0, 1);

//////
// User Code - Begin
//////
// Any register level build method code can come here.

1-32

Code Generation Feedback

//////
// User Code - End
//////
 endfunction: build

 `uvm_object_utils(ral_reg_b_r)

endclass : ral_reg_b_r

class ral_block_b extends uvm_reg_block;
rand ral_reg_b_r r;
 rand uvm_reg_field r_f;
 rand uvm_reg_field f;

 //////
 // User Code - Begin
 //////
 // Any block level code can come here.
 //////
 // User Code - End
 //////
function new(string name = "b");

super.new(name, build_coverage(UVM_NO_COVERAGE));
endfunction: new

virtual function void build();
this.default_map = create_map("", 0, 1,
UVM_LITTLE_ENDIAN, 0);
this.r =
ral_reg_b_r::type_id::create("r",,get_full_name());
this.r.configure(this, null, "");
this.r.build();
this.default_map.add_reg(this.r,
`UVM_REG_ADDR_WIDTH'h0, "RW", 0);
this.r_f = this.r.f;
this.f = this.r.f;
endfunction : build

`uvm_object_utils(ral_block_b)
endclass : ral_block_b

 1-33

Code GenerationFeedback

Arrays

If a system contains a block array or subsystem array, the class
property for the block array or subsystem array is declared as a
fixed-sized array of the corresponding block abstraction class or
system abstraction class.

Example 1-12 System Abstraction Class With Block Array
class ral_sys_SoC extends uvm_reg_block;
 ral_block_uart uart[2]
 ...
endclass: ral_sys_SoC

Specifying Map Name in Single Domain Blocks

Ralgen supports specifying user-defined map names for a single
domain block.

Following RALF syntax can be used within the block construct.

default_map_name <identifier>

Example

The following is a (partial) RALF file:

block foo {

 default_map_name my_map
 bytes 7
 register r2_vh=r2_vh
 register r3_vh= r3_vh
 registerr2_rec_vh=reg_vec (reg_rec)
 register r1=r3[2](reg_ar[%g])

1-34

Code Generation Feedback

}

Following is the generated SystemVerilog code:

class ral_block_foo extends uvm_reg_block;
 virtual function void build();
 this.my_map = create_map("my_map", 0, 7,
UVM_LITTLE_ENDIAN, 0);
 this.default_map = this.my_map;
uvm_reg_map my_map;
….
endclass

 2-1

Register and Memory SpecificationFeedback

2
Register and Memory Specification 1

The Register Abstraction Layer File (RALF) is used to specify all the
registers and memories in the design under verification. It is used to
generate the object-oriented register and memory high-level
abstraction layer. The first step in a project is to create a RALF
description. Appendix - "RALF Syntax" contains detailed syntax and
documentation for the RALF description.

As you add and modify fields, registers, and memories, you can
update the RALF description many times during a project. You can
then regenerate the abstraction layer multiple times without requiring
modifications to the existing environment or tests.

2-2

Register and Memory Specification Feedback

Systems, Blocks, Registers, and Fields

In RAL, a design is a block or a system of blocks. The smallest
functional unit that can be verified is a block. Systems are designs
composed of blocks. Systems can also be composed of smaller
systems of blocks, called subsystems.

There must be at least one block in a RALF description. The top-
level construct describing the design under verification can be a
block or system construct. The top-level block is identified when
the RAL code is generated, therefore, a single RALF description may
contain descriptions of multiple blocks and systems. The following
example shows the RALF description of a design block:

Example 2-1 RALF Description of a Design Block
block blk_name {
 ...
}

Systems are composed of subsystems or blocks. Blocks are
composed of registers, memories, and sub-blocks. There can be no
registers or memories directly in a system. If a design has system-
wide registers or memories, they should be described in a named
block, for example, system_wide. The following example shows
the RALF description of a system:

Example 2-2 RALF Description of a System
system sys_name {
 ...
 block blk_name ...
 system subsys_name ...
}

 2-3

Register and Memory SpecificationFeedback

Registers are composed of fields. Fields are concatenated to form a
register, with optional unused bits between fields. A register must
contain at least one field. The following example shows the RALF
description of registers and memories in a block:

Example 2-3 RALF Description of Registers and Memories in a Block
block blk_name {
 ...
 register reg_name ...
 register reg_name ...
 ...
 memory mem_name ...
}

The field is the basic unit of the RAL. Fields are accessed
automatically, independent of their location within a register or other
fields. Therefore, fields can be moved within or across registers
without the need to modify the code that uses them. The following
example shows the RALF description of fields in a register:

Example 2-4 RALF Description of Fields in a Register
register reg_name {
 ...
 field fld_name ...
 field fld_name ...
}

Reusability and Composition

RALF descriptions are intended to describe designs that can be
arbitrarily combined and reused to create larger designs. A RALF
description of a block or subsystem is not required to be aware of the
context in which the block or subsystem is going to be used. In RALF
descriptions, blocks, and subsystems are described as stand-alone
designs.

2-4

Register and Memory Specification Feedback

Even if a RALF can describe an entire design inline, as shown in
Example 2-5, a description can also instantiate blocks, registers, and
fields as required. The granularity of the description is arbitrary and
you should plan for it to maximize reuse.

Example 2-5 Inlined RALF Description
system sys_name {
 ...
 block blk_name {
 ...
 register reg_name {
 ...
 field fld_name {
 ...
 }
 }
 ...
 memory mem_name {
 ...
 }
 }
}

RALF descriptions can include other RALF descriptions of smaller
designs. Included descriptions can be reused and instantiated to
compose the description of a larger design. The following example
illustrates how this can be performed:

Example 2-6 Hierarchical RALF Description
field fld_name {
 ...
}

register reg_name {
 ...
 field fld_name ;
}

memory mem_name {
 ...

 2-5

Register and Memory SpecificationFeedback

}

block blk_name {
 ...
 register reg_name;
 memory mem_name;
}

system sys_name {
 ...
 block blk_name;
}

Naming

The names of fields, registers, memories, blocks, and systems are
important because these names are used to identify their
corresponding abstraction class in the RAL abstraction model.

The following naming conventions apply to the names elements
within a RALF description:

• Names must not be OV or SV reserved keywords

These names are used as the name of abstraction classes in the
generated OV or SV code. Therefore, they cannot be the same
as reserved keywords in OV or SV.

• Field names should be unique within a block

2-6

Register and Memory Specification Feedback

Each block abstraction class contains a class property for each
field contained in all of its registers, regardless of the specific
register where it is located. If unique, the name of the field class
property within the block abstraction class is the name of the field.
In this case, fields can be moved within or across physical
registers without affecting the verification environment or tests.
Regardless of field name uniqueness, the block abstraction class
contains another field class property referring to each field using
the concatenation of the register and field name. See “Registers”
section for additional information.

Example 2-7 Field Class Properties in a Block Abstraction Class
block blk_name {
 register reg_name {
 field fld1;
 field fld2;
 }
 register xyz {
 field fld2;
 }
}

Yields:

class ral_block_blk_name extends uvm_reg_block;
 ...
 uvm_ral_field fld1, reg_name_fld1;
 uvm_ral_field reg_name_fld2;
 ...
 uvm_ral_field xyz_fld2
endclass

• Register names must be unique within a block and field names.

Each block abstraction class contains a class property for each
register it contains. The name of the register class property within
the block abstraction class is the name of the register and must,
therefore, be unique and should be different from field names.

 2-7

Register and Memory SpecificationFeedback

Example 2-8 Register Abstraction Classes in a Block Abstraction Class
block blk_name {
 register reg_name {
 field fld1;
 field fld2;
 }
}

Yields:

class ral_block_blk_name extends uvm_reg_block;
 ral_reg_blk_name_reg_name reg_name;
 uvm_ral_field fld1, reg_name_fld1;
 uvm_ral_field fld2, reg_name_fld2;
endclass

• Memory names must be unique within a block and unique from
register names and should be unique from field names.

Each block abstraction class contains a class property for each
memory it contains. The name of the memory class property within
the block abstraction class is the name of the memory and must,
therefore, be unique and different from register names. It should
also be different from field names.

Example 2-9 Memory Abstraction Classes in a Block Abstraction Class
block blk_name {
 register reg_name {
 field fld1;
 field fld2;
 }
 memory mem_name;
}

Yields:

class ral_block_blk_name extends uvm_reg_block;
 ral_reg_blk_name_reg_name reg_name;
 uvm_ral_field fld1, reg_name_fld1;
 uvm_ral_field fld2, reg_name_fld2;
 ral_mem_blk_name_mem_name mem_name;

2-8

Register and Memory Specification Feedback

endclass

• Block and subsystem names must be unique within a system.

Each system abstraction class contains a class property for each
block and subsystem it contains. The name of the block and
subsystem class property within the system abstraction class is
the name of the block or subsystem. Therefore, block and
subsystem names must be unique.

• Independently defined names of registers, memories, blocks, and
systems must be, respectively, globally unique within a RALF
description.

Each independently defined RALF element corresponds to a
generated abstraction class in the RALF model (see
“Understanding the Generated Model”). The names of these
elements are used to generate the name of the corresponding
class. Class names must be globally unique in SystemVerilog and
OpenVera. Therefore, the names of independently defined
registers, memories, blocks, and systems must be globally
unique, otherwise they generate identical abstraction class
names.

This requirement does not apply to elements defined inline within
another definition.

 2-9

Register and Memory SpecificationFeedback

Note:
Instantiated fields, registers, memories, blocks and subsystems
can be renamed. With all of these naming requirements, it is very
difficult to have reusable RALF descriptions. Descriptions need
to know their contexts to ensure uniqueness. Also, it is not
possible to describe a design that contains multiple instances of
the same block. Any element of a RALF description can be
renamed when instantiated to ensure uniqueness.

Example 2-10 Renaming RALF Elements
block blk_name {
 ...
}

system sys_name {
 ...
 block blk_name=blk1;
 block blk_name=blk2;
}

Hierarchical Descriptions and Composition

A RAL description can have independently specified registers,
memories, blocks, and subsystems. You can instantiate these
elements in higher level elements to create complete design
descriptions.

When you specify registers, memories, blocks, and subsystems, you
also independently and explicitly specify their physical width as a
number of bytes. Therefore, a block can be composed of registers
and memories of smaller or larger width. Similarly, systems can be
composed of blocks of smaller or larger width.

2-10

Register and Memory Specification Feedback

If you instantiate an element in a wider element, the value of the
narrower element is justified to the least-significant bit and the most
significant bits are padded with zero or truncated.

If you instantiate an element in a narrower element, the value of the
wider element is split into the minimum number of narrower values.

You can specify splitting as:

• Big Endian - The most-significant bits are split into the lower
addresses in the narrower address space. A 5-byte wide value of
0x1234567890 is split into three 2-byte narrower values at
increasing addresses in the following order: 0x0012, 0x3456, and
0x7890.

• Little Endian - The least-significant bits are split into the lower
addresses in the narrower address space. A 5-byte wide value of
0x1234567890 is split into three 2-byte narrower values at
increasing addresses in the following order: 0x7890, 0x3456, and
0x0012.

• Big FIFO - All split values are accessed at the same physical
address in the narrower address space. The most-significant bits
are accessed first. A 5-byte wide value of 0x1234567890 is split
into three consecutive 2-byte narrower values at the same
address in the following order: 0x0012, 0x3456, and 0x7890.

• Little FIFO - All split values are accessed at the same physical
address in the narrower address space. The least-significant bits
are accessed first. A 5-byte wide value of 0x1234567890 is split
into three consecutive 2-byte narrower values at the same
address in the following order: 0x7890, 0x3456, and 0x0012.

 2-11

Register and Memory SpecificationFeedback

Arrays and Register Files

Many designs have identical registers or groups of registers located
in consecutive memory locations. These registers could be
described by explicitly specifying each register, ignoring the fact that
they are identical.

Example 2-11 Explicit Specification of Register Arrays
register reg_name {
 ...
}
block blk_name {
 ...
 register reg_name=reg_0;
 register reg_name=reg_1;
 ...
 register reg_name=reg_7;
}

The repetitive process can be simplified by using the TCL for-loop
command. Using the for-loop only simplifies the syntactical
requirements of the specification. It does not change the RAL model
that is ultimately generated.

Example 2-12 Iterated Explicit Specification of Register Arrays
register reg_name {
 ...
}
block blk_name {
 ...
 for {set n 0} {$n < 8} {incr n} {
 register reg_name=reg_$n;
 }
}

2-12

Register and Memory Specification Feedback

The problem with explicitly enumerating consecutive registers is that
they have unique names. It is not possible to randomly index or
iterate over their RAL model when writing SystemVerilog or
OpenVera code that uses these consecutive registers.

Specifying consecutive registers using a register array results in an
array being available to be indexed or iterated on at runtime, not just
at specification time. See “Arrays” for more details on the code
generation process for arrays.

Example 2-13 Specification of Register Arrays
register reg_name {
 ...
}
block blk_name {
 ...
 register reg_name[8];
 register regX[5] {
 ...
 }
}

A sequence of register arrays locate them in consecutive memory
locations. For example, the specification in Example 2-13 results in
the following address map: reg_name[0], reg_name[1], ...
reg_name[7], regX[0], regX[1], ... regX[4]. If sequences
of register groups, or interleaved register arrays are required, then
you should a register file array. The specification in Example 2-14
yields the following address map: reg[0].reg_name, reg[0].X,
reg[1].reg_name, ... reg[4].reg_name, reg[4].X.

Example 2-14 Specification of Register File Arrays
register reg_name {
 ...
}
block blk_name {
 ...

 2-13

Register and Memory SpecificationFeedback

 regfile reg[5] {
 register reg_name;
 register X {
 ...
 }
 }
}

Support for Storing and Retrieving User-Defined
Property Values

Ralgen supports specifying user-defined properties that needs to be
stored at model build time and you can later retrieve these properties
during simulation. These properties can be specified at register field/
register and map level. You can later retrieve these properties using
the get methods generated for those properties and use them in
sequences. The values that can be stored are integer, strings, queue
or combination of these. You can create properties using the
following syntax:

user_property property_name handle_identifier
<arguments>

For each <property_name> specified, set_<property_name>
and get_<property_name> accessor methods are created by
Ralgen. The arguments of these methods correspond to the
<handle_identifier> and <arguments> specified.

Ralgen generates additional file ral_db.sv which implements the
database. For each <property_name> specified,
set_<property_name> and get_<property_name> access or

2-14

Register and Memory Specification Feedback

methods are created by Ralgen. The arguments of these methods
correspond to the <handle_identifier> and <arguments>
specified.

Example

The following is a (partial) RALF file:

block foo {
bytes 4;
block bar @'h0;
user_property stringstringintprop this string1 string2 12
user_property queueprop this {1, 2, arga}
}

Following is the generated SystemVerilog code:

…
begin
 ral_user_prop_db db_h;
 db_h = ral_user_prop_db::me();
 db_h.map_db.set_stringstringintprop(this, "string1",
"string2",12);
 db_h.map_db.set_queueprop(this, "1, 2, arga");
 end
…

Dumped Database file (ral_db.sv):

package ral_db_pkg;
import uvm_pkg::*;
class idx_container extends uvm_object;

static idx_container me;
int idx;
local function new();
endfunction
static function idx_container get();

if(me == null) begin

 2-15

Register and Memory SpecificationFeedback

me = new();
end
return me;

endfunction
endclass
typedef struct {

 string val1;
 string val2;
 int val3;

}struct_ssi;
class ral_map_db;

struct_ssi stringstringintprop_map[uvm_reg_map];
function void set_stringstringintprop(uvm_reg_map

r, string val1, string val2, int val3);
struct_ssi struct_ssi_;
struct_ssi_.val1 = val1;
struct_ssi_.val2 = val2;
struct_ssi_.val3 = val3;
stringstringintprop_map[r] = struct_ssi_;

endfunction
function void get_stringstringintprop(uvm_reg_map

r , output string val1, output string val2, output int val3);
{>>{val1,val2,val3}} =

stringstringintprop_map[r];
endfunction
string queueprop_map[uvm_reg_map];
function void set_queueprop(uvm_reg_map r, string

val1);
queueprop_map[r] = val1;

endfunction
function string get_queueprop(uvm_reg_map r);

return queueprop_map[r];
endfunction

endclass
class ral_reg_db;

 string bdf_strings1_map[uvm_reg];
function void set_bdf_strings1(uvm_reg r, string

val1);
bdf_strings1_map[r] = val1;

endfunction
function string get_bdf_strings1(uvm_reg r);

return bdf_strings1_map[r];

2-16

Register and Memory Specification Feedback

endfunction
endclass
class ral_user_prop_db ;

ral_map_db map_db;
ral_reg_db reg_db;
static ral_user_prop_db user_prop_db_class_handle

;

protected function new();
map_db = new();
reg_db = new();

endfunction

static function ral_user_prop_db me();
if(user_prop_db_class_handle == null) begin

 user_prop_db_class_handle = new();
end
return user_prop_db_class_handle;

endfunction
endclass

endpackage

Support for Different Reset Values in Register Arrays for
RALF

RALF syntax supports the case where you have different reset
values. The following property allows you to selectively change the
reset value:

change_reset register_or_field_instance_to_reset new_reset_value

The register or field instance specified cannot be an array itself, it
can only be an array element or a simple instance.

 2-17

Register and Memory SpecificationFeedback

This property is supported inside a regfile or block to override the
reset value for a specific register or field. This property can also be
used for a simple register or field instance which is not an array
element.

The following example shows the usage which effectively changes
the reset value of the 11th element of the COUNTERS array:

block slave {
 register COUNTERS[256](COUNTERS[%d]) @'h0400 {
 field value {
 bits 32;
 access ro;
 reset 'h0;
 }
 }
change_reset COUNTERS[10] 'h1
}

The change_reset property can also change the reset values of a
field or field array through block or block instances also.

Example

The following example changes reset value of a field f which is
inside register r2 which is instantiated inside block blk_vh1 which
is instantiated inside block blk_vh:

register r2 {
...
field f
...
}
block blk_vh1 {
bytes 4
register r2 = r2[3]
...
}

block blk_vh {

2-18

Register and Memory Specification Feedback

bytes 4
block blk_vh1 = blk_vh1
....
}

block blk3 {
 bytes 4
 register r2fields (pkt1)
 register r1=r6 (reg_ar[%d])
 register r1=r3 (reg_ar%d)
 block blk_vh = blk_vh[2]
 change_reset blk_vh[0].blk_vh1.r2[0].f 'b0
 change_reset r6.f 'b0
 change_reset r3 'b1
}

Following is the generated SystemVerilog code:

class ral_block_blk_val extends uvm_reg_block;
…
virtual function void build();
…
this.blk_vh[0].blk_vh1.r2[0].f.set_reset('b0);
this.r6.f.set_reset('b0);
this.r3.f.set_reset(32'b00000000000000000000000000000001);
this.r3.f2.set_reset(32'b00000000000000000000000000000000)
;
endfunction : build
`uvm_object_utils(ral_block_blk_val) endclass :
ral_block_blk_val

Virtual Fields and Virtual Registers

By default, fields and registers are assumed to be implemented in
individual, dedicated hardware structures with a constant and
permanent physical location such as a set of D flip-flops. In contrast,
virtual fields and virtual registers are implemented in memory or

 2-19

Register and Memory SpecificationFeedback

RAM. Their physical location and layout is created by an agreement
between the hardware and the software, not by their physical
implementation.

Virtual fields and registers can be modeled using RAL by creating a
logical overlay on a RAL memory model that can then be accessed
as if they are real physical fields and registers. The RAL model of the
memory itself remains available for directly accessing the raw
memory without regard to any virtual structure it may contain.

Virtual fields define continuous bits in one or more memory locations
and can span a memory location boundary. Virtual fields are
contained in virtual registers. Virtual registers define continuous
whole memory locations. They can span multiple memory locations
but are always composed of entire memory locations, not fractions
of memory locations.

Figure 2-1 Virtual Field and Virtual Register Structure

Virtual registers are always arrays because the usual reason they
are virtual is that there are a large number of registers and
implementing the registers in a RAM instead of individual flip-flops is
most efficient. Arrays of virtual registers are associated with a
memory. The association of a virtual register array with a memory
can be static (for example, specified in the RALF file) or dynamic (for
example, specified at runtime through your code).

015
len bfrptr[23:15]

bfrptr[14:0] ok

len bfrptr[23:15]

bfrptr[14:0] ok

Virtual Register[i]}
Virtual Register[i+1]}

2-20

Register and Memory Specification Feedback

Static virtual registers are associated with a specific memory and are
located at specific offsets within that memory. The association is
specified in the RALF file and is created by the code generator. This
association is permanent and cannot be broken at runtime.

Example 2-15 Static Virtual Register Array
block MAC {
 ...
 memory DMABFRS { ... }
 ...
 virtual register CHANNEL[1024] DMABFRS@0 {
 field {...};
 ...
 }
}

Dynamic virtual registers are dynamically associated with a user-
specified memory and are located at user-specified offsets within
that memory at runtime. The dynamic allocation of virtual register
arrays can also be performed randomly by a Memory Allocation
Manager instance. The structure of the virtual registers is specified
in the RALF file, but the number of virtual registers in the array and
its association with a memory is specified in the SystemVerilog or
OpenVera code and must be correctly implemented by you. Dynamic
virtual registers arrays can be relocated or resized at runtime.

Example 2-16 Dynamic Virtual Register Specification
block MAC {
 ...
 memory DMABFRS { ... }
 ...
 virtual register CHANNEL {
 field {...};
 ...
 }
}

 2-21

Register and Memory SpecificationFeedback

Example 2-17 Implementing Dynamic Virtual Registers
ral_model.MAC.CHANNEL.implement(1024,
 ral_model.MAC.DMABFRS,
 0);

Example 2-18 Randomly Implementing Dynamic Virtual Registers
ral_model.MAC.CHANNEL.allocate(1024,
 ral_model.MAC.DMABFRS.mam);

Because virtual fields and virtual registers are implemented in
memory, their content is not mirrored by the RAL model.

Multiple Physical Interfaces

Some designs may have more than one physical interface, each with
accessible registers or memories. Some registers or memories may
even be accessible through more than one physical interfaces and
be shared.

A physical interface is called a domain. Only blocks and systems can
have domains. Domains contain registers and memories. If a block
or system has only one physical interface, there is no need to specify
a domain for that interface.

For example, the block "bridge" shown in Example 2-19 specifies a
block with two physical interfaces and a register accessible from
both interfaces at offset 0 in their respective address spaces.

Example 2-19 Specification for a Two-Domain Block
register xfer {
 bytes 4;
 field data {
 access rw;
 }

2-22

Register and Memory Specification Feedback

 shared (xfer_reg);
}

block bridge {
 domain apb {
 bytes 4;
 register xfer;
 }
 domain ahb {
 bytes 4;
 register xfer;
 }
}

Some physical interfaces may have different transactions used for
configuration than the transactions used for normal operations. For
example, PCI interfaces have configuration write
transactions that are different from normal write transactions.
Configuration transactions are typically used to set a base address
and other decoding information required by normal transactions.
Because configuration transactions are used separately from normal
transactions, and normal transactions cannot occur until the DUT is
suitably configured using configuration transactions, configuration
and normal transactions on the same physical interface must be
modelled as separate physical interfaces.

Systems with multiple domains can instantiate blocks with a single
domain. A domain must be entirely instantiated within a system
domain, that is, a block-level or subsystem-level domain cannot be
split between two system-level domains. Different block-level or
subsystem-level domains can be instantiated in the same system-
level domain but in different address offsets.

 2-23

Register and Memory SpecificationFeedback

When instantiating a multiple-domain block or sub-system in a
multiple-domain system, the same name and hdl_path must be
used for all instances. This creates a single instance of the block or
subsystem with its various domains instantiated in different domains.

Example 2-20 shows a specification of a multiple-domain
instantiation. Notice how the same instance name "br" and HDL path
are used in both cases. Example 2-21 shows the corresponding
abstraction model of the system. Notice how domains do not create
an additional abstraction scope.

Example 2-20 Instantiating a Two-Domain Block in a Two-Domain System
system amba {
 domain apb {
 bytes 4;
 block bridge.apb=br (amba_bus.bridge);
 }
 domain ahb {
 bytes 4;
 block bridge.ahb=br (amba_bus.bridge);
 }
}

Example 2-21 Model of a Two-Domain Block in a Two-Domain System
class ral_block_bridge extends uvm_reg_block;
 ral_reg_xfer xfer;
 ...
endclass

class ral_sys_amba extends uvm_reg_block;
 ral_block_bridge br;
 ...
endclass

Example 2-22 Instantiating a Domain Array Block
block blk {
 domain dom[8] {
 ...

2-24

Register and Memory Specification Feedback

 }
 ...
}

system sys {
domain sys_dom[8] {

bytes 4;
block blk.dom[*]=blk @'h1000;
...

}
...

}

Special Registers

The UVM register library presumes all registers and memories are
average registers and memories, they are accessible at a known,
constant, unique physical address(es), their behavior is constant
throughout the simulation regardless of the physical interface used
to access them, and they contain a single value.

Special register behavior can be modeled using any number of
extension capabilities provided in the UVM register and field
abstraction classes. Pre- and post-read/write callback objects, virtual
callback methods, user-defined front-doors, and user-defined back-
doors may be used to extend the behavior of the base library.

This section discusses the following topics that are supported by
UVM Ralgen:

• “Indirect Indexed Registers”

• “Unimplemented Registers”

• “Aliased Registers”

 2-25

Register and Memory SpecificationFeedback

• “Banked Registers”

• “Shared Registers”

• “Sparse Register Arrays”

• “Modeling Non-Standard Behavior of Registers”

• “Accessing Registers Based on Index in a regfile”

Indirect Indexed Registers

RALF provides support for indirect indexed registers. By default, the
entire address space of registers and memories is assumed to be
linearly mapped into the address space of the block that instantiates
it. Each register or location in a memory corresponds to a unique
address in the block.

However, some registers are not directly accessible through a
dedicated address. Indirect access of an array of such registers is
accomplished by first writing an “index” register with a value that
specifies the array's offset, followed by a read or write of a “data”
register to obtain or set the value for the register at that specified
offset. This indexing mechanism allows to access a large memory in
a limited address space.

In UVM-RAL, “data” register is modeled by extending the pre-defined
uvm_reg_indirect_data class. The “data” register must not
contain any fields. The “index” and “array” registers must be built
first, as “index” and “array” registers are specified when the “data”
register is configured using the
uvm_reg_indirect_data::configure() method. The indirect
register array, “index”, and “data” registers are added as members of
the containing block.

2-26

Register and Memory Specification Feedback

Since the registers in indirect indexed register array are not
accessible through dedicated addresses, they are not added to the
map. Only, the “index” and “data” registers are added to a map in the
containing block.

For details on indirect indexed registers, see section “Indirect
Indexed Registers” in Universal Verification Methodology (UVM) 1.1
User's Guide.

The following is the specification for each of the three registers used
for implementing UVM-RAL Indirect Indexed Register functionality:

• Indirect Index Register

Indirect Index register is specified like a regular register. It does
not have a special syntax.

register idx_reg … {
…
}

• Indirect Array Register

Indirect Array register in UVM is not mapped to any address,
hence the offset of an indirect array register needs to be
mentioned as "none".

For example:

register array_reg @none {
 field f1 {}
 …
}

• Indirect Data Register

 2-27

Register and Memory SpecificationFeedback

Indirect data register conveys the information regarding which
registers are used as an index register and unmapped array
register. You can use the "indirect_data" property to provide
this information. Also, an indirect data register should not contain
any fields. An error message is issued if this register contains any
fields.

In certain cases, you might have to index a group of registers that
are essentially not register arrays. To index a non-array register,
use the regfile instead of the register array as the regfile
enables you to queue all the registers specified in the register file.

Inside the regfile, the regs queue property contains all the register
handles present inside this regfile. The order of specification of
register in the register file determines the index location and this
queue is used to index each of the register specified inside.

Syntax for using indirect data registers:

indirect_data
<(indirect_reg[=arr_inst_name])|(indirect_regfile[=regf
ile_inst_name])> indirect_idx=idx_inst_name;

Example,

register r1 {
...
}

register r2 {
...
}

regfile rf {
 register r1=r1 @none;
 register r2=r2 @none;
}

2-28

Register and Memory Specification Feedback

register ind {
 field f {
 bits 8;
 }
}

system slave {
 bytes 4;

 block B1 @0 {
 bytes 4;
 regfile rf=rf1 @none;
 register ind=index @0x1;
 register data1 @0x0 {
 indirect_data rf=rf1 ind=index;
 }

 }
}

The generated SystemVerilog code includes the following
configure call to use regs as indirect array:

this.data1.configure(this.index, this.rf1.regs, this,
null);

The Indirect Array and Indirect Index registers are extended from
uvm_reg class. However, the Indirect Data register is extended
from the uvm_reg_indirect_data class.

For example:

class ral_b1_data_reg extends uvm_reg_indirect_data.
...
endclass

The call to configure method involves specifying Indirect Array and
Indirect Index instances:

 2-29

Register and Memory SpecificationFeedback

data_reg.configure(idx_reg, array_reg, this, null);

Apart from this, there is no mapping done for indirect array register.

Limitations

The following are the limitations with this feature:

• Indirect_data rule is valid only while generating UVM code.

• An error is indicated if an Indirect data register contains any fields.

• Indirect array register must be an array.

• Indirect index register must be a non-array register.

Limitations with regfile

• The register file pointed should be specified as @none
(unmapped). All the registers inside this register file should be
unmapped (either unspecified or as @none).

• Different regfile instances cannot be used as both indirect indexed
array and normal register file.

Unimplemented Registers

Ralgen supports unimplemeted registers. The UVM register model
can model registers that are specified but are not implemented in the
DUT. This allows the verification environment and testcases to make
use of these registers before these are available.

Since these registers are unimplemented, there is nothing to read or
write inside the DUT. The mirror in a register abstraction class
provides a faithful model of the expected behavior of the respective

2-30

Register and Memory Specification Feedback

register, thus, it can be used to provide a read back value. A yet-to-
be-implemented register is thus modeled by writing to and reading
from the mirror.

An unimplemented register can be modelled by providing a user-
defined front-door and back-door that access the mirrored value
instead of performing bus transactions.

RALF specification for un-implemented register:

{register regName @offset ?bankGroupName.bankModeName
?unimplemented …}

The unimplemented attribute can be used either at instantiation time
or declaration time. In case it is used at declaration time, then all
instances of that register are treated as unimplemented.

Only one frontdoor and one backdoor extension is generated for a
specification containing one or more unimplemented registers. The
frontdoor and backdoors should access the mirrored value instead of
performing bus transactions.

Example 2-23 Unimplemented Registers
class ral_unimplemented_fd extends uvm_reg_frontdoor;
 virtual task body();
 uvm_reg R;
 $cast(R, rw_info.element);
 if(rw_info.kind == UVM_READ) rw_info.value[0]
= R.get();
 R.predict(rw_info.value[0], -1,
 (rw_info.kind == UVM_READ)?
UVM_PREDICT_READ: UVM_PREDICT_WRITE,
 rw_info.path, rw_info.map);
 endtask : body
endclass: ral_unimplemented_fd

 2-31

Register and Memory SpecificationFeedback

class ral_unimplemented_bd extends uvm_reg_backdoor;
 virtual task read(uvm_reg_item rw);
 uvm_reg R;
 $cast(R, rw.element);
 do_pre_read(rw);
rw.value[0] = R.get();
 R.predict(rw.value[0], -1, UVM_PREDICT_READ,
rw.path, rw.map);
 do_post_read(rw);
 endtask : read
 virtual task write(uvm_reg_item rw);
 uvm_reg R;
 $cast(R, rw.element);
 R.predict(rw.value[0], -1, UVM_PREDICT_WRITE,
rw.path, rw.map);
 endtask : write
endclass: ral_unimplemented_bd

The user-defined frontdoor and backdoor must be set during the
build method of the corresponding block, since the environment is
not accessible during generation.

virtual function void build();
 ...
 begin
 ral_unimplemented_fd R2_fd;
 ral_unimplemented_bd R2_bd;
 R2_fd = new;
 R2_bd = new;
 R2.set_frontdoor(R2_fd);
 R2.set_backdoor(R2_bd);
 end
endfunction

Note:
The “unimplemented” attribute is valid only when generating the
UVM code. Ralgen issues an error message if you use the
“unimplemented” attribute in RALF while generating VMM code.

2-32

Register and Memory Specification Feedback

Aliased Registers

Ralgen provides support for UVM Aliased registers. Aliased registers
are accessible from multiple addresses in the same address map.
These are different from shared registers as the latter are accessible
from multiple address maps. Typically, the fields in aliased registers
have different behavior depending on the address used to access
them. For example, the fields in a register may be readable and
writable when accessed using one address, but read-only when
accessed from another address.

Modeling aliased registers in UVM involves more than simply
mapping the same register at two different addresses.

In a UVM register model, each instance of a uvm_reg class must be
mapped to a unique address in an address map and for aliased
registers, a register class instance for each address is required. This
is enabled using a specific register instance to access the aliased
register through a specific address.

Each register instance must be of a register type that models the
behavior of the register and the field it contains of its corresponding
alias. For example, a register that contains a field that is RW when
accessed through one address, but RO when accessed through
another address requires two register types: one with a RW field and
another with a RO field, and both using the same field names.

The aliasing functionality must be provided in a third class that links
the two register type instances. The aliasing class can make use of
pre-defined registers and field callback methods to implement the
aliasing functionality. It may also make use of additional APIs or
functionality created by the register model generator in the different
register types that model each alias of the register. The aliasing class

 2-33

Register and Memory SpecificationFeedback

should be based on uvm_object to be factory-enabled. The
required reference to the various register instance aliases shall be
supplied through a configure() method.

RALF Extensions

In order to generate the corresponding alias framework, you need to
specify the following:

• Grouping of registers which need to be aliased together

• Access policy of each of the field of these registers

The alias keyword is added as a block level property, as follows:

alias alias_name Reg1 Reg2 Reg3 ..
 {
 Reg1.F1 = Reg3.F1
 Reg2.F1 = Reg3.F1
 }

Where,

alias_name specifies the identifier for this alias.

Reg1, Reg2, Reg3 are the registers which require aliasing.

Field level mapping is specified within the curly brackets that
allows you to provide synchronization information. The field
instance specifies the access policy.

For example, you have 3 interfaces for a register, where first
instance has w1c policy for a field, second instance has w1s policy
for a field, and third instance has ro policy for the field. In case you
want to update third register’s field whenever a write operation is
performed using first or second instance, mapping allows you to

2-34

Register and Memory Specification Feedback

specify the pair of register fields to be synchronized. The callback
based update mechanism is generated based on the policy of both
the registers.

Example

To synchronize the ro field of a register with field w1c policy,
whenever write operation is performed on the register.

When you specify the alias property, an additional code is generated.
The generated code contains the following:

• Extensions to the uvm_reg_cbs class which implements field
level synchronization based on the access policy. The generated
class have the following prototype:

class <policy_one>_to_<policy_two>_update extends
uvm_reg_cbs;
 local uvm_reg_field m_toF;
 function new(uvm_reg_field toF);
 m_toF = toF;
 endfunction

 virtual function void post_predict(uvm_reg_field fld,
 uvm_reg_data_t previous,
 inout uvm_reg_data_t value,
 input uvm_predict_e kind,
 uvm_path_e path,
 uvm_reg_map map);
//Value transformation logic as per the policy pair
 endfunction
endclass

The following class is generated if a field having ro access policy
is synchronized with the field having w1c policy:

class w1c_to_ro_update extends uvm_reg_cbs;
 local uvm_reg_field m_toF;

 2-35

Register and Memory SpecificationFeedback

 function new(uvm_reg_field toF);
 m_toF = toF;
 endfunction

 virtual function void post_predict(uvm_reg_field fld,
 uvm_reg_data_t previous,
 inout uvm_reg_data_t value,
 input uvm_predict_e kind,
 uvm_path_e path,
 uvm_reg_map map);
 bit res;
 if (kind != UVM_PREDICT_WRITE) return;
 res = m_toF.predict(((~value) & previous), -1,
UVM_PREDICT_READ, path, map);
 endfunction
endclass

Only one class is generated for each distinct 'access policy' pair.
Further classes are only generated for the policy pairs present in
your alias block.

For example, if it is required to alias a field having w1c policy to
a field with ro policy, and there is another alias needed with the
same policy pair (w1c for one field and ro for another field), then
only one class is generated and it is instanced twice. Also, no
other class is generated corresponding to the other policy pair
(since your aliasing does not need them).

• A wrapper aliasing class which instantiates the synchronization
class(es) described in the preceding step for each different type
of register.

class ral_alias_<block_name>_<alias_name> extends
uvm_object;
 protected <register_type1> m_<register_name1>;
 protected <register_type2> m_<register_name2>;

`uvm_object_utils(ral_alias_<block_name>_<alias_name>)

2-36

Register and Memory Specification Feedback

 function new(string name = "<alias_name>");
 super.new(name);
 endfunction: new

 function void
configure(<register_type1><register_name1>,
<register_type2> <register_name2);
 <policy_one>_to_<policy_two>_update
<field_one>2<field_two>;

 //Other aliasing class instances as needed
 m_<register_name1> = <register_name1>;
 m_<register_name2> = <register_name2>;
 <register_name1>_<field_name1>_to_<register_name2>_
<field_name2>= new(<register_name2>.<field_name2>);
 uvm_reg_field_cb::add(<register_name1>.<field_name1
>,
<register_name1>_<field_name1>_to_<register_name2>_<fie
ld_name2>);

//Other instantiations and callback registration as
needed
endfunction : configure
endclass : ral_alias_<block_name>_<alias_name>

Therefore, if two registers are aliased with fields named F in both
the registers having access policies w1c and ro in the respective
instances, the following class is generated:

class ral_alias_b1_alias1 extends uvm_object;
 protected ral_reg_reg2_w1c m_reg2;
 protected ral_reg_reg3_ro m_reg3;
 `uvm_object_utils(ral_alias_b1_alias1)

 function new(string name = "alias1");
 super.new(name);
 endfunction: new

 function void configure(ral_reg_reg2_w1c reg2,
ral_reg_reg3_ro reg3);
 w1c_to_ro_update reg3_F_to_reg2_F;
 m_reg2 = reg2;

 2-37

Register and Memory SpecificationFeedback

 m_reg3 = reg3;
 reg3_F_to_reg2_F = new(reg3.F);
 uvm_reg_field_cb::add(reg2.F, reg3_F_to_reg2_F);
 endfunction : configure
endclass : ral_alias_b1_alias1

• The corresponding block instantiates the aliasing class and glue
the actual instances.

Therefore, for the application of synchronizing ro field with w1c,
the following additional code is generated in the build method of
the block:

 begin
 ral_alias_b1_alias1 alias1;
alias1 = ral_alias_b1_alias1::type_id::create("alias1",
get_full_name());
 alias1.configure(reg2, reg3);
 end

Limitations

• Aliasing is not supported with -P and F switches of ralgen.

• Aliasing currently requires one of the field of the field pair to have
policy type RO or RW.

• Aliasing of field is not supported for field having policies of type
W1 or WO1.

Banked Registers

Ralgen provides support for Banked registers which are the registers
that share a common address but are individually selected based on
an external condition, such as the value of an external signal, or the
value of a field in another register.

2-38

Register and Memory Specification Feedback

Some points to note about Banked Registers:

• Only one banked register can be selected at a given time.

• There can be more than two banked registers residing at the same
address.

• It is possible that none of the banked registers are selected.

• Only front-door accesses are affected by the banking. Backdoor
access to banked registers is not affected by the banking.

• If a banked register is accessed via the frontdoor and it is not
currently selected,

- An error is issued.

- The register model does not attempt to cause the accessed
banked register to be selected.

- The front-door access accesses whatever banked register
mapped at the same address is currently selected.

- The register model mirror shall update the mirrored value of the
banked register that is actually selected (if any).

• If a banked register is accessed via the backdoor and it is not
currently selected,

- No error or warning is issued.

- The access is performed normally.

• You are responsible to update the identity of the bank currently
selected.

- If the identity of the selected bank is different from the actual
bank selection state in the DUT,

 2-39

Register and Memory SpecificationFeedback

-The register model may not be able to detect this condition.

-The register model may not update the mirror values correctly.

-No error or warning messages are issued.

The register bank group must be specified using a
<snps:bankGroup> element in a <snps:memoryMap> element in
the <spirit:memoryMap> element. The name and a set of bank
modes are then specified using the <snps:name> and
<snps:bankMode> elements.

There can be more than one bankGroup in the same address map.
The names of bankGroups within an address map must be mutually
unique. A bankGroup is composed of two or more bankModes. The
names of a bankMode must be unique within a bankGroup.

Example 2-24
<spirit:memoryMap>
 <spirit:vendorExtensions>
 <snps:memoryMap>
 <snps:bankGroup>
 <snps:name>bankGroupName</snps:name>
 <snps:bankMode>
 <snps:name>bankModeName</snps:name>
 </snps:bankMode>
 </snps:bankGroup>
 </snps:memoryMap>
 </spirit:vendorExtensions>
</spirit:memoryMap>

The Banked registers are associated with a specific mode by using
a <snps:bankGroupRef> and a <snps:bankModeRef> element
in the <snps:register> or <snps:registerFile> elements.
The specified bankGroupName must be the name of a bankGroup
defined in the address map containing the register or register file.
The specified bankModeName must be the name of a bankMode
defined in the specified bankGroup.

2-40

Register and Memory Specification Feedback

The register or register file is accessible only if the specified
bankGroup is currently in the specified bankMode. The method to
specify a currently active bankMode of a specific bankGroup at run-
time is outside the scope of IP-XACT.

If a register file is specified as banked, all of the registers and register
files it contains are similarly banked. It is an error to have an explicitly
banked register or register file in a banked register file.

Example 2-25
<spirit:registerFile>
 <spirit:vendorExtensions>
 <snps:registerFile>
 <snps:bankGroupRef>
 bankGroupName
 </snps:bankGroupRef>
 <snps:bankModeRef>bankModeName</snps:bankModeRef>
 </snps:registerFile>
 </spirit:vendorExtensions>
</spirit:registerFile>
<spirit:register>
 <spirit:vendorExtensions>
 <snps:register>
 <snps:bankGroupRef>
 bankGroupName
 </snps:bankGroupRef>
 <snps:bankModeRef>bankModeName</snps:bankModeRef>
 </snps:register>
 </spirit:vendorExtensions>
</spirit:register>

To specify register banking in the RALF description, the following
additions are required:

• In a single-domain block or a domain element:

{bankgroup bankGroupName bankModeName bankModeName …}

 2-41

Register and Memory SpecificationFeedback

• In a register and register file instantiations:

{register regName @offset ?bankGroupName.bankModeName …}

Use Model

The use of banked registers in a UVM register model requires the
use of following UVM library classes:

• snps_uvm_reg_bank_group

This class specifies the modes available in a bankGroup and the
current mode in which the bankGroup is present. The extensions
of this class specify a bankGroup type, with all of the valid
bankModes in that group.

All instances of this class are put in the
uvm_resource_DB#(snps_uvm_reg_bank_group)
resource database under the full hierarchical name of the group.

You are responsible for retrieving the appropriate instance of this
class from the resource database and calling a method on it to
specify the current bankMode (whenever it changes). By default,
a bankGroup is in its first declared bankMode.

• snps_uvm_reg_banked

This class is an extension of the uvm_reg class for banked
registers. Banked registers are modeled by extending
snps_uvm_reg_banked class instead of the uvm_reg class.

The configure() method of this class specifies the bankMode
that must be selected in the specified bankGroup class instance
for the banked register to be selected. It also returns the content
of banked registers mapped to the same address.

2-42

Register and Memory Specification Feedback

• snps_uvm_reg_bank_set

This class is an extension of the uvm_reg class that encapsulates
all the banked registers mapped at the same address.

• snps_uvm_reg_predictor

This class is a modified version of
uvm_reg_predictor::write() to handle the case where
uvm_reg_map::get_reg_by_offset() returns an instance
of snps_uvm_reg_bank_set instead of a uvm_reg.

Instances of this predictor must be used instead of the
uvm_reg_predictor class in environments where banked
registers are used.

• snps_uvm_reg_map

This class detects the banked registers mapped to the same
physical address and wrap them in an instance of
snps_uvm_reg_bank_set class. All registers mapped to the
same physical address must be banked registers and must be in
the same bankGroup and be mutually exclusively selected.

Shared Registers

Shared registers are accessible through more than one physical
interfaces and be shared. You can specify the access policy while
instantiating a shared register, as shown in the following example:

register data_xfer {
 bytes 4;
 field data {
 bits 32;
 }
 shared;

 2-43

Register and Memory SpecificationFeedback

}

block bridge {
 domain pci {
 bytes 4;
 register data_xfer write;
 }
 domain ahb {
bytes 4;
 register data_xfer write;
 }
}

Also, while generating backdoor paths for DPI-based tasks,
generation of the add_hdl_path calls is supported for shared
registers.

So, if in the above example, hdl_path is specified in register
declaration as follows,

register data_xfer {
 bytes 4;
 field data {
 bits 32;
 }
 shared (data_xfer);
}

The generated code contains add_hdl_path as follows,

this.data_xfer.add_hdl_path
('{
 '{"data_xfer", -1, -1}
});

2-44

Register and Memory Specification Feedback

Sparse Register Arrays

Ralgen provides support to specify sparse register arrays in RALF.
Sparse register arrays help you to optimize the performance when a
large register array is present in RTL, but only some of the elements
are accessed during simulation.

In case of a simple register array, register instances are created
corresponding to each of the element in the array when register
model is built. If only some of the locations are accessed in a large
array, it may not be desirable to allocate instances for all the
locations. A sparse register array addresses this need and does not
create instances upfront. It creates register instances dynamically
during the simulation based on the locations that are accessed.

For example, if only ten locations from a register array of size 1024
are accessed during simulation, the sparse register array only
creates ten instances during the course of simulation.

Use Model

To specify to ralgen that sparse register array model needs to be
generated for a particular register array, the *sparse* keyword
must be specified in the first dimension as follows:

register sp_arr[100 *sparse*];

With the above specification, ralgen generates the RAL model where
sp_arr is an object of a class extended from uvm_reg_array
instead of uvm_reg. The instantiation and binding to the rest of the
model is taken care by ralgen.

 2-45

Register and Memory SpecificationFeedback

To compile the generated code along with the testbench, you can
use +define+UVM_SPARSE_ARRAY that includes the base code
changes necessary for the sparse array implementation.

To access an element in UVM_SPARSE_ARRAY, the read/write calls
need to be executed along with the index specification. For example,
to write to the third element of sp_arr, the write call is as follows:

model.sp_arr.write(status, 2, data1, .parent(this));

Note:
To use sparse register array functionality, UVM library shipped
with VCS needs to be used.

Limitations

The following are the limitations with this feature:

• Only frontdoor access is supported, backdoor access is not
supported.

• Coverage model is not supported.

• Sparse register array is supported only for simple registers.
Special registers like indirect registers are not supported.

Modeling Non-Standard Behavior of Registers

To model a non-standard behavior of a register, you can embed the
callback classes in the generated ralgen code. This enables you to
easily embed the non-standard register behavior and reduce the
changes needed to the generated model. The syntax is a follows:

register_cb_class <class_name> {

2-46

Register and Memory Specification Feedback

 var_declarations {
 }
 new_method (args) {
 }
 pre_read_method {
 }
 post_read_method {
 }
 pre_write_method {
 }
 post_write_method {
 }
}

This results in generating the callback class extending from
uvm_reg_cb with the code placed in appropriate methods in the
SystemVerilog code as follows:

class <class_name> extends uvm_reg_cb {
 function new (…);
 endfunction
 }

 function void pre_write (…);
 endfunction
 …
endclass

These declarations are allowed only at global level and you cannot
declare them inside systems or blocks. Furthermore, to ease the
addition of callback, the following rules are applicable inside the
register/regfile/block definition.

• In the register definition, the syntax to add callback is as follows:

add_reg_cb <cb class name> "(" new_method_args ")".

• Inside the block and the regfile definition, you can attach the
callback to a particular register instance as follows:

add_reg_cb <register instance name> <cb class name> "("

 2-47

Register and Memory SpecificationFeedback

new_method_args ")".

The generated code of the corresponding class inside a build is as
follows:

begin
<cb class name> reg_cb = new(new_method_args);
uvm_reg_cb::add(<register instance name>, reg_cb);

end

Note:
- In the case of callback addition specified inside the register

definition, 'this' keyword is used as
<register_instance_name>

- Ralgen automatically adds the argument, string
name=<callback_class_name> to the method and calls
super.new(name) as the first implementation.

Accessing Registers Based on Index in a regfile

A regfile is generated with an additional property to queue all the
registers present in the regfile. The regfile extended class has the
following property declared in it:

 uvm_reg regs[$];

You can use this queue to access registers based on the index.

For example,

model.block.regfile.regs[0].write(.status(status),
.value('habcd_1234), .path(UVM_FRONTDOOR), .parent(this));

Each scalar register is added to the queue. In case of a register
array, individual register of the array is added.

2-48

Register and Memory Specification Feedback

 3-1

Generated Back-DoorsFeedback

3
Generated Back-Doors 1

Automatically generated back-door mechanisms are associated with
their corresponding register or memory abstraction class when the
RAL model containing these registers and memories is instantiated.
However, in order to enable the automatic generation of back-door
access, it is necessary to specify the hierarchical path to the HDL
structures that implement the register or the memory. This is
accomplished by using the hdl_path attributes in “field” , “register”
, “regfile” , “memory” , “block” , and “system” instantiations of the
RALF specification.

The generated backdoor simply concatenates the path elements
specified in the individual hdl_path attributes to form the complete
path to the target register or memory. For example, the RALF file
shown in Example 3-1 yields the path
S1_TOP_PATH.b1_i.dec.r1_reg to the register r1.

 3-2

Generated Back-Doors Feedback

Example 3-1 RALF Description With hdl_path Specifications
system s1 {
 ...
 block b1 (b1_i) @’h1000 {
 ...
 register r1 dec.r1_reg {
 ...
 }
 }
}

For a path to be well-formed, a RALF “regfile” , “block” , or “system”
must correspond to a design module or an entity instance. For
example, the (partial) RTL code shown in Example 3-2 represents
the structure of the design matching the specification in Example 3-
1.

Example 3-2 RTL Structure
module b1(...);
 ...
 always @ (posedge clk)
 begin: dec
 reg [7:0] r1_reg;
 if (rst) r1_reg <= 0;
 else if (...) r1_reg <= ...;
 end
 ...
endmodule

module s1(...);
 ...
 b1 b1_i(...);
 ...
endmodule

module tb_top;
 ...
 s1 dut(...);
 ...
endmodule

 3-3

Generated Back-DoorsFeedback

The absolute path to the instance of the DUT that corresponds to the
RAL model is specified by defining the name_TOP_PATH symbol
where name is the uppercase name of the top-level block or system
in the RAL model. Using the structure shown in Example 3-2, the
S1_TOP_PATH symbol must be defined to tb_top.dut, as shown
below.

% vcs ... +define+S1_TOP_PATH=tb_top.dut ... \
 ral_s1.sv ...

Arrays

If the RALF specification contains arrays of “system” , “block” ,
“regfile” , “register” , or “field” instances (see “Arrays and Register
Files” for details on arrays of instances), the hdl_path attribute
must contain a %d, [%d], or [%g] format specifier.

Example 3-3 shows the key differences between them.

Example 3-3 A RALF Description Using Different Types of Array Backdoor
system s1 {
 bytes 1
 block b1[2] (b1_i%d) {
 bytes 1
 register r1 (dec.r1_reg) {
 field f
 }
 }
 block b2 (blk2) {
 bytes 1
 register r2[2] (r2_array[%d]) {
 field f
 }
 }
 block b3[2] (b3_gen_array[%g].blk) {
 bytes 1

 3-4

Generated Back-Doors Feedback

 register r3 (dec.r3_reg) {
 field f
 }
 }
}

%d Format Specifier

You should use the %d format specifier when the corresponding
backdoor RTL implementation of the RALF array is not really an
array, rather a series of similarly named non-array signals, for
example, block b1 array in Example 3-3.

Example 3-4 shows that the generated backdoor path of such a
RALF array does not have any array in it.

Example 3-4 Generated Code During the %d Format Specifier Usage
class ral_reg_s1_b1_r1_bkdr extends
uvm_ral_reg_backdoor;
 int b1;

 function new(string name);
 super.new(name);
 this.b1 = b1;
 endfunction

 virtual task read(uvm_reg_item rw);
 do_pre_read(rw);
 case (b1)
 0:

 Rw.value[0]= `S1_TOP_PATH.b1_i0.dec.r1_reg;;
 1:

 Rw.value[0]= ̀ S1_TOP_PATH.b1_i1.dec.r1_reg;;
 endcase
 rw.status = UVM_IS_OK;
 do_post_read(rw);
 endtask

 3-5

Generated Back-DoorsFeedback

 virtual task write(uvm_reg_item rw);
do_pre_write(rw);

 case (b1)
 0: `S1_TOP_PATH.b1_i0.dec.r1_reg = rw.value[0];
 1: `S1_TOP_PATH.b1_i1.dec.r1_reg = rw.value[0];
 endcase
 rw.status = UVM_IS_OK;

do_post_write(rw);
 endtask
endclass

An example of the RTL implementation of a RALF array, which is not
an array in the backdoor or RTL, rather a series of similarly named
non-array signals is as follows:

module s1(...);
 ...
 b1 b1_i0(...);
 b1 b1_i1(...);
 ...
endmodule

[%d] Format Specifier

You should use the [%d] format specifier only when the end signal/
variable of the corresponding backdoor RTL path/implementation is
actually an array, but not a generated instance array. For example,
block r2 as shown in Example 3-3.

The advantage of having a normal array instead of generated
instance array is that you can access each array element by indexing
with a variable as shown in Example 3-5.

Example 3-5 Generated Code During the [%d] Format Specifier Usage
class ral_reg_s1_b2_r2_bkdr extends
uvm_ral_reg_backdoor;
 int r2;

 3-6

Generated Back-Doors Feedback

 function new(string name);
super.new(name);

 this.r2 = r2;
 endfunction

);
 virtual task read(uvm_reg_item rw);

do_pre_read(rw);
 rw.value[0] = `S1_TOP_PATH.blk2.r2_array[r2];
 rw.status = UVM_IS_OK;

do_post_read(rw);
 endtask

virtual task write(uvm_reg_item rw);

 `S1_TOP_PATH.blk2.r2_array[r2] = rw.value[0];
 rw.status = UVM_IS_OK;
 endtask
endclass

[%d:%d] Format Specifier

You can use the [%d:%d] format specifier to specify the register
arrays modeled in RTL using a single-dimension packed array in the
UVM flow. Ralgen considers [%d:%d] as an indication that the
corresponding representation in RTL is of a packed register. It
generates the add_hdl_path as follows:

this.r[J].add_hdl_path('{
 '{$psprintf("r[%0d:%0d]",
 J*(size_of_register),
 (J*size_of_register)+
 (size_of_register-1)), -1, -1}
 })

 3-7

Generated Back-DoorsFeedback

The backdoor paths are changed accordingly. Consider the following
RALF code:

block bar {
 bytes 1;
 register r[4] hdl_path=(r1[%d:%d]) {

 backdoor_xor_mask 'hff

 field f1 {
 bits 4;
 reset 0;
 access rw;
 }

 field f2[4] {
 bits 1;
 reset 0;
 access rw;
 }
 }
}
system foo {
 bytes 1;
 block bar (bar);

}

For this, the XMR based backdoor paths are generated as follows:

virtual task read(uvm_reg_item rw);
 do_pre_read(rw);

 case (r)
 0: rw.value[0] = `FOO_TOP_PATH.bar.r1[0:7];
 1: rw.value[0] = `FOO_TOP_PATH.bar.r1[8:15];
 2: rw.value[0] = `FOO_TOP_PATH.bar.r1[16:23];
 3: rw.value[0] = `FOO_TOP_PATH.bar.r1[24:31];
 endcase

 rw.value[0] = rw.value[0] ^ 'hff;
 rw.status = UVM_IS_OK;

 do_post_read(rw);
endtask

 3-8

Generated Back-Doors Feedback

virtual task write(uvm_reg_item rw);
 rw.value[0] = rw.value[0] ^ 'hff;
 do_pre_write(rw);

 case (r)
 0: `FOO_TOP_PATH.bar.r1[0:7] = rw.value[0];
 1: `FOO_TOP_PATH.bar.r1[8:15] = rw.value[0];
 2: `FOO_TOP_PATH.bar.r1[16:23] = rw.value[0];
 3: `FOO_TOP_PATH.bar.r1[24:31] = rw.value[0];

 endcase

 rw.status = UVM_IS_OK;
 do_post_write(rw);

endtask

The corresponding add_hdl_path is as follows:

this.r[J].add_hdl_path('{'{$psprintf("r1[%0d:%0d]", J*8,
J*8+7), -1, -1}});

[%g] Format Specifier

Use the [%g] format specifier when the corresponding backdoor
RTL implementation of the RALF array is a generated instance array.
For example, block b3 array, as shown in Example 3-6.

Note:

Since the generated instance array cannot be indexed using any
variable, numeric constants are used for indexing them.

Example 3-6 Generated Code During the [%g] Format specifier Usage
class ral_reg_s1_b3_r3_bkdr extends
uvm_ral_reg_backdoor;
 int b3;

 function new(string name);
super.new(name);

 this.b3 = b3;
 endfunction

 3-9

Generated Back-DoorsFeedback

virtual task read(uvm_reg_item rw);
do_pre_read(rw);

 case (b3)
 0: rw.value[0] =
`S1_TOP_PATH.b3_gen_array[0].blk.dec.r3_reg;
 1: rw.value[0] =
`S1_TOP_PATH.b3_gen_array[1].blk.dec.r3_reg;
 endcase
 rw.status = UVM_IS_OK;
 endtask

virtual task write(uvm_reg_item rw);

 case (b3)
 0: `S1_TOP_PATH.b3_gen_array[0].blk.dec.r3_reg
= rw.value[0];
 1: `S1_TOP_PATH.b3_gen_array[1].blk.dec.r3_reg
= rw.value[0];
 endcase
 rw.status = UVM_IS_OK;
 endtask
endclass

You should use the [%g] format specifier when the backdoor RTL
path has an array which is not the end signal/variable of that
backdoor RTL path. For example, block b3 array shown in Example
3-6.

Note:

You cannot index an XMR using variable, unless it is an end signal
or variable. In this case, you use numeric constants to index them.

 3-10

Generated Back-Doors Feedback

Backdoor Support for VHDL or Mixed Language
Designs

For UVM, XMR based backdoor access generation is supported for
VHDL designs, or registers, or memories located in a portion of the
design where the end signal is implemented or described using
VHDL.

The XMR based backdoor aids in better simulation performance as
it avoids having to provide read or write capabilities on the design
hierarchy for enabling DPI based accesses. You need to use
vhdl_path to specify backdoor RTL paths ending in a VHDL signal
or a variable.

Example 3-7 RAL Backdoor Support for VHDL Signals
system top {
 bytes 1
 block blk vhdl_path=(dut_blk) {
 bytes 1;
 register reg1 vhdl_path=(reg1) {
 bytes 1;
 field f vhdl_path=(f) {
 bits 8;
 }
 }
 }
}

In Example 3-7, the final synthesized or concatenated backdoor
access path for register reg1 is dut_blk:reg1. For a given RALF
construct, you can either specify a vhdl_path or a verilog
hdl_path (not both).

 3-11

Generated Back-DoorsFeedback

If the RALF description of the top-level block or system has
vhdl_path specified for it or any of its descendants and ralgen
command line options -b and -top_path are used, then ralgen
creates a ral_vhdl_bkdrs_<top>.v file. The ralgen generated
file, ral_vhdl_bkdrs_<top>.v has the definition of a module
called ral_<top>_vhdl_bkdr_connector.

For each VHDL signal for which backdoor access path needs to be
generated using $hdl_xmr, this module has the corresponding
Verilog side reg definition (of appropriate size) for use or mapping
with $hdl_xmr and an initial block which would have the
corresponding $hdl_xmr connection commands.

For a read/write VHDL implemented register, one Verilog register
definition for reading and one for writing needs to be created. These
intermediate Verilog registers are named after their corresponding
synthesized/concatenated hierarchical/absolute (v)hdl_path
names only after replacing ':' or '.' with '__' and adding a '__' prefix to
it. To indicate the direction of data flow or assignment, a '__ip' or
'__op' suffix is also added.

An example of a module for the RALF described above is shown in
Example 3-8.

Example 3-8 Generated Connector Module
module ral_top_vhdl_bkdr_connector;
 reg[6:0] __dut_blk__reg1__f__ip;
 reg[6:0] __dut_blk__reg1__f__op;

 initial begin
 $hdl_xmr("<top_path>.dut_blk.reg1.f",
"__dut_blk__reg1__f__ip");
 $hdl_xmr("__dut_blk__reg1__f__op",
"<top_path>.dut_blk.reg1.f");
 $hdl_xmr("<top_path>.dut_blk.reg1.f",
"__dut_blk__reg1__f__op");

 3-12

Generated Back-Doors Feedback

end
endmodule

Here, the <top_path> is the absolute top-level XMR path of the
VHDL design instance which must be provided with the ralgen
command line option -top_path or -p. For generating RAL VHDL
backdoor code, you should specify this option apart from -b ralgen
command line option.

Take an instance of this ralgen generated module and specify the
absolute top-level XMR path of this instance in the compile time
macro <top>_VHDL_BKDR_CONNECTOR. By doing this, the RAL
backdoor implementation classes can access the VHDL DUT
registers or memories through this connection module instance as
shown in Example 3-9.

Example 3-9 Backdoor Connection
class ral_reg_top_blk_reg1_bkdr extends uvm_reg_backdoor;

 function new(string name);
 super.new(name);
 endfunction
 virtual task read(uvm_reg_item rw);
 wait (this.b2b == 0);
 do_pre_read(rw);
 begin
 rw.value[0] = ̀ UVM_REG_DATA_WIDTH'h0;
 rw.value[0][6:0] =
`TOP_VHDL_BKDR_CONNECTOR.__dut_blk__reg1__f__ip;
 end
 rw.status = UVM_IS_OK;
 do_post_read(rw);
 endtask

 virtual task write(uvm_reg_item rw);
 do_pre_write(rw);
 begin
`TOP_VHDL_BKDR_CONNECTOR.__dut_blk__reg1__f__op =

 3-13

Generated Back-DoorsFeedback

rw.value[0][6:0];
 end
 rw.status = UVM_IS_OK;
 do_post_write(rw);
 endtask

 local int b2b;
endclass

Scoping Backdoor Classes to a SV Package

Ralgen currently provides two options for generating register/
backdoor memories.

• Cross-module reference based backdoors: The ralgen option -b
generates a set of classes with write() and read() APIs to
access register/memory constructs using cross-module
references (XMRs).

• DPI-C based: The default backdoor option with ralgen. Here,
DPI-C is used to deposit or read values from register/memory
constructs.

The generated backdoor classes with the first option cannot be
packaged into a SystemVerilog package as the HDL XMRs are a
part of the generated classes. The backdoors generated using
second option can be packaged into a SystemVerilog package
but in this case, the check for the existence of backdoor paths
happens during simulation. This enhancement aims to generate
a backdoor infrastructure that brings the best of both the above
options using a virtual interface instance to access the HDL XMRs.

 3-14

Generated Back-Doors Feedback

Command-Line Option

-gen_vif_bkdr

When specified, it helps the generated model to have a register
model free of HDL XMRs in its backdoor classes.

Specification

• It is necessary to specify the -b option when specifying the
-gen_vif_bkdr option.

• A SystemVerilog interface is generated (in a separate file)
additional to the register model itself which you need to pass to
the compile command-line. Additional setup is not required.

• It is necessary to specify -gen_vif_bkdr when -b is specified
with -P.

Example

The following is a (partial) RALF file:

block host_regmodel {
 bytes 2;
 register HOST_ID (host_id) @'h0000;
}

It generates the following interface with tasks to access HDL XMRs
and register backdoor classes (partial) calling these functions using
a virtual interface handle:

ral_host_reg_model_interface.sv:

interface ral_host_regmodel_intf;
import uvm_pkg::*;

 3-15

Generated Back-DoorsFeedback

initial
uvm_resource_db#(virtual ral_host_regmodel_intf)::set("*",
"uvm_reg_bkdr_if", interface::self());

task ral_host_regmodel_HOST_ID_bkdr_read(uvm_reg_item
rw, int index = 0);

rw.value[0] = `HOST_REGMODEL_TOP_PATH.host_id;
endtask
task

ral_host_regmodel_HOST_ID_bkdr_write(uvm_reg_item rw, int
index = 0);

`HOST_REGMODEL_TOP_PATH.host_id[31:0] =
rw.value[0][31:0];

endtask
endinterface

ral_host_reg_model.sv:
class ral_reg_host_regmodel_HOST_ID_bkdr extends
uvm_reg_backdoor;

virtual ral_host_regmodel_intf __reg_vif;
function new(string name);

super.new(name);
uvm_resource_db#(virtual

ral_host_regmodel_intf)::read_by_name(get_full_name(),
"uvm_reg_bkdr_if", __reg_vif);

endfunction

virtual task read(uvm_reg_item rw);
do_pre_read(rw);

__reg_vif.ral_host_regmodel_HOST_ID_bkdr_read(rw);
rw.status = UVM_IS_OK;
do_post_read(rw);

endtask

virtual task write(uvm_reg_item rw);
do_pre_write(rw);

__reg_vif.ral_host_regmodel_HOST_ID_bkdr_write(rw);
rw.status = UVM_IS_OK;
do_post_write(rw);

endtask

 3-16

Generated Back-Doors Feedback

endclass

Target Structures

The automatically generated back-door access code must make
certain assumptions about the nature of the HDL code used to
implement the register and memory being accessed.

Although there are almost unlimited ways you can implement a
register, there are only a few styles that are supported by the back-
door access generator. It is important that, when implementing
registers and memories in RTL code, a suitable coding style be used.

The following guidelines outline the restrictions on RTL structures
used to implement registers and memories to enable automatic
generation of their back-door access. Some of these restrictions may
be removed in the future as the capabilities of the back-door access
generator are improved.

If the target structures do not meet the requirements for automatic
generation of back-door access, a user-defined back-door access
mechanism must be created.

Writable Fields and Memories Must be Implemented Using
"reg"

When performing a back-door write operation, a blocking procedural
assignment is used. This requires that the target of the assignment
be a reg.

Read-Only Fields May be Implemented Using Wire, Parameter
or Boolean Expression

 3-17

Generated Back-DoorsFeedback

Such structures cannot be written to, therefore, only the read back-
door access to a read-only field is generated. Attempting a back-
door write to a read-only field results in an error.

Example 3-10 Read-only Field Implemented Using an Expression
always @ (*)
begin
 if (wr) rdat = ’Z;
 else case (addr)
 ...
 16’h0010: rdat = {fifo_fl, fifo_mt};
 ...
 endcase
end

Example 3-11 RALF Description for Read-only Field
register r1 @’h0010{
 bytes 2;
 field mt (fifo_mt) {
 bits 1;
 reset 1;
 access ro;
 }
 field fl (fifo_fl) {
 bits 1;
 reset 0;
 access ro;
 }
}

Example 3-12 Alternative RALF Description for Read-only Field
register r1 (fifo_fl, fifo_mt) @’h0010{
 bytes 2;
 field mt {
 bits 1;
 reset 1;
 }
 field fl {
 bits 1;
 reset 0;
 }

 3-18

Generated Back-Doors Feedback

}

A Register May Implement All of its Fields in a Single "reg"

A register may be composed of more than one field. All these
different fields may be implemented in the same reg that
implements the overall register.

This implies that all bits in the register, up to the most-significant bits
of the most-significant field are implemented and there are no
reserved or unused bits between fields. In that case, no hdl_path
should be specified in field instantiations in the register specification.

For example, the register specified using the register definition
shown in Example 3-13 can be implemented using the RTL code
shown in Example 3-14. The reg named r1_reg is used to
implement fields f1 and f2.

Example 3-13 Register with Multiple Fields
register r1 (r1_reg) @’h0010{
 bytes 2;
 field f1 {
 bits 4;
 reset 4’hA;
 }
 field f2 {
 bits 8;
 reset 8’h55;
 }
}

Example 3-14 Single-reg Implementation of Register with Multiple Fields
reg [11:0] r1_reg;
always @ (posedge clk)
begin
 if (rst) r1_reg <= {8’h55, 4’hA};
 else if (wr) case (addr)
 ...

 3-19

Generated Back-DoorsFeedback

 16’h0010: r1_reg <= wdat;
 ...
 endcase
end

always @ (*)
begin
 if (wr) rdat = ’Z;
 else case (addr)
 ...
 16’h0010: rdat = r1_reg;
 ...
 endcase
end

If per-field peek()/poke() operations are required (not yet supported),
each field instance should have its respective bit slice specified in its
hdl_path attribute. For example, the register specified using the
register definition shown in Example 3-15 can also be
implemented using the RTL code shown in Example 3-14.

Example 3-15 Register with Multiple Fields
register r1 @’h0010{
 bytes 2;
 field f1 (r1_reg[3:0]) {
 bits 4;
 reset 4’hA;
 }
 field f2 (r1_reg[11:4]) {
 bits 8;
 reset 8’h55;
 }
}

A Register May Implement its Fields in Separate "reg"

A register may be composed of more than one field. All these
different fields may be implemented in different regs that each
implement one field. The register is the concatenation of these

 3-20

Generated Back-Doors Feedback

individual regs. This implementation allows reserved or unused bits
between fields. In that case, the hdl_path must be specified in field
instantiations in the register specification.

For example, the register specified using the register definition
shown in Example 3-16 can be implemented using the RTL code
shown in Example 3-17. The regs named f1_reg and f2_reg are
used to implement fields f1 and f2 respectively. Additionally, both
Example 3-10 and Example 3-11 show an example of a register
implemented using separate constructs for separate read-only fields.

Example 3-16 Register with Multiple Fields
register r1 @’h0010{
 bytes 2;
 field f1 (f1_reg) {
 bits 4;
 reset 4’hA;
 }
 field f2 (f2_reg) @8 {
 bits 4;
 reset 4’h5;
 }
}

Example 3-17 Multiple-reg Implementation of Register with Multiple Fields
reg [3:0] f1_reg, f2_reg;
always @ (posedge clk)
begin
 if (rst) begin
 f1_reg <= 4’hA;
 f2_reg <= 4’h5};
 end
 else if (wr) case (addr)
 ...
 16’h0010: begin
 f1_reg <= wdat[3:0];
 f2_reg <= wdat[11:8];
 end
 ...
 endcase

 3-21

Generated Back-DoorsFeedback

end

always @ (*)
begin
 if (wr) rdat = ’Z;
 else case (addr)
 ...
 16’h0010: rdat = {f2_reg, 4’h0, f1_reg};
 ...
 endcase
end

A Field May be Implemented Using Multiple "reg"

Like registers, a field may be implemented as separate regs. For
example, the register specified using the register definition
shown in Example 3-18 can be implemented using the RTL code
shown in Example 3-19. The regs named f2a_reg and f2b_reg
are used to implement field f2.

Example 3-18 Field Implemented with Multiple regs
register r1 @’h0010{
 bytes 2;
 field f1 (f1_reg) {
 bits 4;
 reset 4’hA;
 }
 field f2 (f2a_reg, f2b_reg) @8 {
 bits 4;
 reset 4’h5;
 }
}

Example 3-19 Multiple-reg Implementation of a Fields
reg [3:0] f1_reg, f2a_reg, f2b_reg;
always @ (posedge clk)
begin
 if (rst) begin
 f1_reg <= 4’hA;
 {f2a_reg, f2b_reg} <= 4’h55};
 end

 3-22

Generated Back-Doors Feedback

 else if (wr) case (addr)
 ...
 16’h0010: begin
 f1_reg <= wdat[3:0];
 {f2a_reg, f2b_reg} <= wdat[11:4];
 end
 ...
 endcase
end

always @ (*)
begin
 if (wr) rdat = ’Z;
 else case (addr)
 ...
 16’h0010: rdat = {f2a_reg, f2b_reg, f1_reg};
 ...
 endcase
end

A Register May Have a Mix of Read-Only and Writable Fields

Read-only fields cannot be written to, even with a backdoor. A
register containing a mix of read-only and writable fields skip the
read-only fields during a back-door write operation.

A Memory Must be Implemented Using a Single Unpacked Array

A memory is accessed using the offset of the memory as the index
of the array storing its content. Two memories cannot be modeled
using the same array nor can a memory be implemented using the
concatenation of multiple arrays (either bit-wise or address-wise).

For example, the memory specified using the memory definition
shown in Example 3-20 can be implemented using the RTL code
shown in Example 3-21. The reg named m1_reg is used to
implement the entire memory.

 3-23

Generated Back-DoorsFeedback

Example 3-20 Memory Specification
memory m1 (m1_reg) @’h1000{
 size 1k;
 bits 16;
}

Example 3-21 Implementation of Memory with Unpacked Array
reg [15:0] m1_reg[1024];
always @ (posedge clk)
begin
 if (wr) casex (addr)
 ...
 16’b0001_00xx_xxxx_xxxx: m1_reg[addr[9:0]] <= wdat;
 ...
 endcase
end

always @ (*)
begin
 if (wr) rdat = ’Z;
 else casex (addr)
 ...
 16’b0001_00xx_xxxx_xxxx: rdat = m1_reg[addr[9:0]];
 ...
 endcase
end

Note:

Automatic generation of back-door access to memories modeled
using DesignWare models is not yet supported.

Support for Value Inversion in Backdoor Code

Value inversion is supported in the backdoor code using the
following property inside the field:

backdoor_xor_mask <bit_by_bit_inversion_mask>

 3-24

Generated Back-Doors Feedback

Based on the bit mask information, ralgen transforms the backdoor
value appropriately. The bit_by_bit_inversion_mask field can
be specified in decimal, binary, octadecimal, or hexadecimal format.

For example,

backdoor_xor_mask 'b010;

This modifies the backdoor task as follows:

rw.value[0] = <backdoor_path> ^ 'b010;

Support for Field Association With Register Backdoor
Specification

Current RALF syntax does not provide a way to accurately specify
the register backdoors when the register backdoor is composed of a
concatenation of multiple HDL paths. The proposal is to provide a
way to associate HDL paths with the specific fields of any given
register while instantiating the register. The style would be similar to
the named port mapping style used in Verilog.

Command-Line Option

None

This implementation involves support for additional syntax in RALF.
Ralgen option is not required. The proposed syntax works with both
the DPI-C based backdoors (default) and the HDL XMR based
backdoors (ralgen option -b).

 3-25

Generated Back-DoorsFeedback

Specification

• Supporting simple HDL path specification using field name
association

register reg=reg_inst (.fld1(reg.fld1), .fld2(reg.fld2), ….);

reg_inst is an instance of register of type reg; fld1 and fld2
are fields defined within reg. This syntax generates backdoor
write()/read() tasks that assign/sample values to/from
hdl_path1and hdl_path2 from/to the model value that
corresponds to the position of fields fld1 and fld2 respectively.

• Supporting HDL path concatenation within a named association

register reg=reg_inst (.fld1(hdl_path1),
.fld2(hdl_path2_high, hdl_path2_low, …));

The first specification holds here, but the HDL path specification
of fld2 here is a concatenation of two or more HDL paths.
Backdoors generated using the -b option do a simple Verilog
concatenation while assigning/sampling the model values that
correspond to field fld2. For DPI-C based backdoors, this style
uses hdl_path2_high ignoring "hdl_path2_low , …"
because it does not provide adequate information to accurately
map the HDL paths into the correct offset positions of the model
values corresponding to the field fld2.

• Format specifiers are used as a part of HDL paths to specify the
arrays. The current support does not include the specification of
more than one format specifier in the HDL path, that is, specifying
backdoor HDL path for an array of fields within an array of registers
cannot be done as shown below.

register reg=reg_array [16]
(.fld1(top.reg[%d].fld1[%d]),
.fld2(top.reg[%d].fld2[%d]), ….);

 3-26

Generated Back-Doors Feedback

• If a format specifier is specified, either the register or the
associated field must be an array. An error appears if both of them
are defined as a non-array type.

Examples

The following is a RALF file:

register HOST_ID {
 field REV_ID {
 bits 32;
 access rw;
 reset 'h03;
 }
 field CHIP_ID {
 bits 8;
 access rw;
 reset 'h5A;
 }
}

block host_regmodel {
 bytes 2;
 register HOST_ID(.REV_ID(rev_id), .CHIP_ID(chip_id));
}

It generates the following write()/read() tasks within the register
backdoor classes:

ral_host_reg_model.sv:
class ral_reg_host_regmodel_HOST_ID_bkdr extends
uvm_reg_backdoor;

virtual task read(uvm_reg_item rw);
do_pre_read(rw);
rw.value[0][31:0] =

`HOST_REGMODEL_TOP_PATH.rev_id;
rw.value[0][39:32] =

`HOST_REGMODEL_TOP_PATH.chip_id;

 3-27

Generated Back-DoorsFeedback

rw.status = UVM_IS_OK;
do_post_read(rw);

endtask

virtual task write(uvm_reg_item rw);
do_pre_write(rw);
`HOST_REGMODEL_TOP_PATH.rev_id =

rw.value[0][31:0];
`HOST_REGMODEL_TOP_PATH.chip_id =

rw.value[0][39:32];
rw.status = UVM_IS_OK;
do_post_write(rw);

endtask
endclass

The following is a RALF file:

register HOST_ID {
 field REV_ID {
 bits 32;
 access rw;
 reset 'h03;
 }
 field CHIP_ID {
 bits 8;
 access rw;
 reset 'h5A;
 }
}

block host_regmodel {
 bytes 2;
 register HOST_ID(.REV_ID(rev_id), .CHIP_ID(chip_id_high,
chip_id_low));
}

It generates the following write()/read() tasks within the register
backdoor classes:

ral_host_reg_model.sv:

 3-28

Generated Back-Doors Feedback

class ral_reg_host_regmodel_HOST_ID_bkdr extends
uvm_reg_backdoor;

virtual task read(uvm_reg_item rw);
do_pre_read(rw);
rw.value[0][31:0] =

`HOST_REGMODEL_TOP_PATH.rev_id;
rw.value[0][39:32] =

{`HOST_REGMODEL_TOP_PATH.chip_id_high,

`HOST_REGMODEL_TOP_PATH.chip_id_low};

rw.status = UVM_IS_OK;
do_post_read(rw);

endtask

virtual task write(uvm_reg_item rw);
do_pre_write(rw);
`HOST_REGMODEL_TOP_PATH.rev_id =

rw.value[0][31:0];
{`HOST_REGMODEL_TOP_PATH.chip_id_high,

 `HOST_REGMODEL_TOP_PATH.chip_id_low} = w.value[0][39:32];
rw.status = UVM_IS_OK;
do_post_write(rw);

endtask
endclass

The following is a RALF file:

register HOST_ID {
 field REV_ID {
 bits 32;
 access rw;
 reset 'h03;
 }
 field CHIP_ID {
 bits 8;
 access rw;
 reset 'h5A;
 }
}

block host_regmodel {

 3-29

Generated Back-DoorsFeedback

 bytes 2;
 register HOST_ID (.REV_ID(rev_id), .CHIP_ID((chip_low, 0,
3),

(chip_high, 4,
7)))
}

It generates the following write()/read() tasks within the register
backdoor classes:

ral_host_reg_model.sv:
class ral_reg_host_regmodel_HOST_ID_bkdr extends
uvm_reg_backdoor;

virtual task read(uvm_reg_item rw);
do_pre_read(rw);
rw.value[0][31:0] =

`HOST_REGMODEL_TOP_PATH.rev_id;
rw.value[0][35:32] =

`HOST_REGMODEL_TOP_PATH.chip_low;
rw.value[0][39:36] =

`HOST_REGMODEL_TOP_PATH.chip_high;
rw.status = UVM_IS_OK;
do_post_read(rw);

endtask

virtual task write(uvm_reg_item rw);
do_pre_write(rw);
`HOST_REGMODEL_TOP_PATH.rev_id =

rw.value[0][31:0];
`HOST_REGMODEL_TOP_PATH.chip_low =

rw.value[0][35:32];
`HOST_REGMODEL_TOP_PATH.chip_high =

rw.value[0][39:36];
rw.status = UVM_IS_OK;
do_post_write(rw);

endtask
endclass

 3-30

Generated Back-Doors Feedback

You can specify the width for concatenated field paths by specifying
LSB and MSB positions, as follows:

field fld2 ((0:1)(data1_out), (2:3)(data2_out))
 {

bits 4;
reset 0;
access rw;

 }

In case of register instantiation, the path is specified as follows:

register reg=reg_inst (.fld1(reg.fld1),
 .fld2((0:1) reg.data1_out),
 (2:3) reg.data2_out),
 …)

);

With the additional information coming from LSB and MSB positions,
you shall be able to generate add_hdl_path with the required
information. This also allows you to set the path for particular bits.

Note:

- LSB and MSB positions are with respect to the field. Ralgen
automatically uses the field offset to adjust the LSB position at
the register level.

- During register definition, HDL path specification with LSB and
MSB positions is not allowed at the register level. The LSB and
MSB positions should rather be declared at the field level in
such a case. For example,

 register r1 {
 bytes 4;
 field f2 ((0:7)path1, (8:15)path2) {
 bits 16;
 }
 field f1 (f2_path) {
 bits 16;
 }

 3-31

Generated Back-DoorsFeedback

 }

- If hdl_path is specified during register definition at field level,
and at register instantiation level, then ralgen uses the path
specified during register instantiation.

-You must either specify all the paths for a particular field with
LSB/MSB or none of the paths should contain LSB and MSB.

-In case multiple paths are provided without LSB and MSB, then
ralgen continues to use only the first path with DPI-C based
backdoors.

Support for Register Array Index in Field Paths

By default, Ralgen looks for %d or [%d] type of format in hdl_path,
when the corresponding RALF object is an array and does not
process the format specifier when it is not an array.

In a scenario where a register in RALF is merely a logical
representation and there is no physical representation, this implies
that the register array in RALF would probably be modeled as
individual field arrays in RTL. So, if backdoor access is required, it
would need to use the register index in field paths.

Command-Line Option

-use_reg_idx_in_fld_path

When specified, ralgen substitutes %d or [%d] format specifier with
the register array index in the field path for XMR-based backdoors.

 3-32

Generated Back-Doors Feedback

Specification

The register index can be used in the field path with the following
conditions:

• All the fields in a register must contain an extra index.

• The path specification must be consistent across the fields if
multiple field specifiers are present.

For example, if one field path contains %d as the first specifier
and [%d] as the second one, then all other field paths should also
have the same pattern, that is, %d must be the first specifier in
all the field paths.

Example

Consider the following RALF specification:

register foo_bar {
 bytes 4;
 field foo (mod.foo_%d) {
 access rw;
 bits 16;
 hard_reset 'h0000;
 }
 field bar (mod.bar_%d) {
 access rw;
 bits 16;
 hard_reset 'h0000;
 }
}

block regs {
 bytes 4;
 register foo_bar=foo_bar[2] @'h0;
}

 3-33

Generated Back-DoorsFeedback

With the -use_reg_idx_in_fld_path option, the generated
backdoor code uses the array index of foo_bar for substitution in
the field paths. The generated backdoor code snippet is as follows:

class ral_reg_regs_foo_bar_bkdr extends uvm_reg_backdoor;
…

virtual task read(uvm_reg_item rw);
do_pre_read(rw);
case (foo_bar)
0: begin
 rw.value[0] = `UVM_REG_DATA_WIDTH'h0;
 rw.value[0][15:0] = `REGS_TOP_PATH.mod.foo_0;
 rw.value[0][31:16] = `REGS_TOP_PATH.mod.bar_0;
end

1: begin
 rw.value[0] = `UVM_REG_DATA_WIDTH'h0;
 rw.value[0][15:0] = `REGS_TOP_PATH.mod.foo_1;
 rw.value[0][31:16] = `REGS_TOP_PATH.mod.bar_1;
end
endcase
rw.status = UVM_IS_OK;
do_post_read(rw);

endtask
virtual task write(uvm_reg_item rw);

do_pre_write(rw);
case (foo_bar)
0: begin
 `REGS_TOP_PATH.mod.foo_0 = rw.value[0][15:0];
 `REGS_TOP_PATH.mod.bar_0 = rw.value[0][31:16];
end

1: begin
 `REGS_TOP_PATH.mod.foo_1 = rw.value[0][15:0];
 `REGS_TOP_PATH.mod.bar_1 = rw.value[0][31:16];
end
endcase
rw.status = UVM_IS_OK;
do_post_write(rw);

endtask
endclass

 3-34

Generated Back-Doors Feedback

Support for Active Monitoring Logic

For active monitoring, an additional watch task with case statement
is generated to keep the testbench register instance up-to-date
(mirror) with RTL register. This is a part of the same backdoor class
as only one backdoor class can be set using the set_backdoor
function. This uses the same interface redirection to continue to
make the code reusable. Thus, it makes use of local (relative to
where the top interface is bound) hierarchical references counting on
hierarchy never changing and being existent. Other classes for
specific actions, for example, invalidate caches, initialization
cleanup, backdoor access to cache tag/data can be enabled to
provide user_code addition when using ralgen.

Command-Line Option

-auto_mirror

When specified, it generates the active monitoring logic within the
backdoor infrastructure of the register model.

Specification

• It is necessary to specify the -b option when specifying the
-auto_mirror option.

• A SystemVerilog interface is generated (in a separate file)
additional to the register model itself which you need to pass to
the compile command line. Additional setup is not required.

• It can be used with -gen_vif_bkdr switch, in which case the
generated interface file has additional functions to facilitate active
monitoring.

 3-35

Generated Back-DoorsFeedback

Example

The following (partial) RALF file:

block host_regmodel {
 bytes 2;
 register HOST_ID (host_id) @'h0000;
}

Generates the following additional tasks in the register backdoor
classes (partial):

ral_host_reg_model.sv:

virtual task wait_for_change(uvm_object element);
 uvm_reg rg;
 uvm_status_e status;
 $cast(rg, element);
 @(`HOST_REGMODEL_TOP_PATH.rev_id or

 `HOST_REGMODEL_TOP_PATH.chip_id);
 rg.mirror(status, , UVM_BACKDOOR);
endtask

 virtual function bit is_auto_updated(uvm_reg_field
field);
 case (field)
 "REV_ID" : return 1;
 "CHIP_ID" : return 1;
 endcase
 endfunction

The option -gen_vif_bkdr generates the following additional
tasks in the generated interface (partial) and the tasks within the
backdoor classes is modified appropriately:

ral_host_reg_model.sv:

class ral_reg_host_regmodel_HOST_ID_bkdr extends
uvm_reg_backdoor;

 3-36

Generated Back-Doors Feedback

virtual ral_host_regmodel_intf __reg_vif;
virtual task wait_for_change(uvm_object element);
 uvm_reg rg;
 uvm_status_e status;
 $cast(rg, element);

__reg_vif.ral_host_regmodel_HOST_ID_wait_for_change();
 rg.mirror(status, , UVM_BACKDOOR);
endtask

endclass

ral_host_reg_model_interface.sv:

interface ral_host_regmodel_intf;
import uvm_pkg::*;

initial
uvm_resource_db#(virtual ral_host_regmodel_intf)::set("*",
"uvm_reg_bkdr_if", interface::self());

task ral_host_regmodel_HOST_ID_wait_for_change();
@(`HOST_REGMODEL_TOP_PATH.rev_id or
 `HOST_REGMODEL_TOP_PATH.chip_id);

endtask
endinterface

Reserved RALF Keywords in Backdoor Path

If any RALF reserved keyword is found in any RALF backdoor HDL
path specification, ralgen issues an error. That means, the
following RALF description in Example 3-22 issues an error.

Note: There are two RALF keywords, block and register in the
HDL path of register reg.

 3-37

Generated Back-DoorsFeedback

Example 3-22

register reg (block.register) {

 …

}

If any of your RALF description has got RALF reserved keywords
used in any of its backdoor HDL path specification, then use the
following RALF syntax for specifying your RALF backdoor HDL path:

Example 3-23

register reg hdl_path = (block.register) {

 …

}

The semantics of hdl_path usage is functionally or completely
equivalent to the original HDL path specification style (used in
Example 3-22), except the fact that RALF reserved keywords
checking is disabled when the hdl_path syntax is used for
specifying backdoor HDL path.

 3-38

Generated Back-Doors Feedback

 4-1

Functional Coverage ModelFeedback

4
Functional Coverage Model 1

You can generate a RAL model with one or more predefined
functional coverage models to measure how thoroughly the various
host-accessible elements are exercised by your functional
verification suite.

The RAL model that is generated by default does not contain any
functional coverage model. To generate a coverage model, ralgen
must be invoked with the -c option. The argument to the -c option
determines which coverage model is included in the RAL model. Use
the following options to generate the respective coverage models:

-c b

Generates the register bits coverage model.

-c a

Generates the address map coverage model.

 4-2

Functional Coverage Model Feedback

-c f

Generates the field value coverage model.

Multiple functional coverage models can be generated in the same
RAL model by specifying the -c option multiple times or specifying
multiple arguments to a single -c option. For example, the following
commands are equivalent:

% ralgen -c b -c a ...
% ralgen -c ba ...

Although the generated RAL model might contain one or more
functional coverage models, they are not enabled by default. This is
necessary in order to reduce the memory footprint of a RAL model
because some functional coverage models can be significant in size.
This is done to improve the runtime performance of simulations as
the collection of coverage metrics and the writing of functional
coverage databases creates a significant overhead. Therefore, it is
necessary to explicitly enable a functional coverage model when a
RAL model is first constructed.

To include coverage model in various block, register or memory
abstract class instances, call the include_coverage class before
building the RAL model.

For example:

uvm_reg::include_coverage("*", UVM_CVR_ALL);

To enable implicit sampling, add the set_coverage call before
starting the sequence.

Example 4-1 Enabling Implicit Sampling
virtual task run_phase(uvm_phase phase);

 4-3

Functional Coverage ModelFeedback

…
 env.regmodel.reset();
 void'(env.regmodel.set_coverage(UVM_CVR_ALL));
begin
 uvm_reg_sequence seq;

 seq = uvm_reg_bit_bash_seq::type_id::create("seq");
 seq.model = env.regmodel;
 seq.start(env.bus.sqr);
…
endtask

Note:
Ralgen automatically generates a corresponding HVP file when
it is generating UVM RAL code with coverage enabled. The HVP
file gets generated with the name uvmp_<top>.hvp and it can
be included in your top level verification plan. The plan in HVP
can be used as a sub-plan.

Predefined Functional Coverage Models

The following functional coverage models are available to be
generated in the RAL model. Different models target a different
perspective of the register verification process and should be used
when appropriate.

Functional models can be large in size and significantly impact
runtime performance. They should be used carefully at the right level
of design granularity and only when their coverage points are
targeted.

Once filled to satisfaction, functional coverage models must not be
generated. However, their metrics should be preserved and
continued to be reported.

 4-4

Functional Coverage Model Feedback

Register Bits

This model is generated using the -c b command-line option for
every register specified with a "+b" cover attribute. The coverage
model is constructed by specifying the uvm_reg::REG_BITS
symbol.

This model is designed to confirm that every specified bit in a RAL
model has been thoroughly exercised and is implemented as
specified. This functional model can be quite large and therefore is
better used at the block level.

This functional coverage model is implemented by instances of
ral_cvr_reg_regname::reg_bits coverage groups. In a
block, there is one coverage group instance per register, for each
domain instantiating the register.

There is a coverage point for every field defined in the register and a
bin to measure whether each individual bit of a field has been read
and written through the domain physical interface as a 0 and a 1,
respectively.

For field arrays, a coverage point is generated for each and every
field in the field array and those coverpoints are named in the
<field_name>_<array_index> format where,
<array_index> ranges from 0 to field array size - 1.

This model does not measure backdoor accesses. The coverage
model does not include unused or reserved bits.

 4-5

Functional Coverage ModelFeedback

Address Map

This model is generated using the -c a command-line option for
every register and memory specified with a +a cover attribute. The
coverage model is constructed by specifying the
UVM_CVR_ADDR_MAP symbol.

This model is designed to confirm that the address map of a design
has been thoroughly exercised. It is best used at the top-level.

Address map coverage is implemented at the block level and
supports address coverage of registers (including any registers in
register files) and memories.

The fields cannot be physically accessed, so they are not considered
in the address map coverage. Virtual registers, being a logical
structure imposed on a memory, are not included in the address map
coverage. It is assumed that if the address map coverage model of
the memory containing the virtual registers is covered, the address
map coverage model for the virtual registers can be considered
covered as well.

The address map functional coverage model is composed of the
ral_cvr_block_<block_name>::[<domain_name>_]addr_
map coverage groups. For each block, there is one coverage group
instance for each domain in each block instance. In each coverage
group (that is, domain), there is a coverage point for each register
(including each registers in register arrays and register files) and a
coverage point for each memory in the block.

A register coverage point contains only one bin named accessed.
The bin is covered whenever the register is accessed using a read
or a write operation.

 4-6

Functional Coverage Model Feedback

A memory coverage point contains three bins. The first bin, named
first_location_accessed, is covered when the first location in
the memory is accessed using a read or a write operation. The
second bin, named last_location_accessed, is covered when
the last location in the memory is accessed using a read or a write
operation. The third bin, named other_locations_accessed, is
covered when anyone of the remaining locations in the memory is
accessed using a read or write operation.

Address map coverage measurement happens automatically during
any front door read or write operation. Back-door accesses do not
contribute toward the address map functional coverage.

Field Values

This model is generated using the -c f command-line option for
every register specified with a +f cover attribute. The coverage
model is constructed by specifying the UVM_CVR_FIELD_VALS
symbol.

This model is designed to confirm that every configuration of a
design has been verified. It is best used at the top-level.

Field value coverage model is implemented at the register level and
supports value coverage of all fields and cross coverage between
fields and other cross coverage points within the same register. Field
value coverage is not supported for virtual fields or registers.

The field value functional coverage model is composed of the
ral_reg_<reg_name>::field_values coverage groups.
There is one coverage group instance for each register instance. In
each coverage group, there is a coverage point for each field in the
register, except for unused and reserved fields.

 4-7

Functional Coverage ModelFeedback

For field arrays, a coverage point is generated for each and every
field in the field array, and those coverpoints are named in the
<field_name>_<array_index>_value format where,
<array_index> ranges from 0 to field array size - 1.

By default, if the size of a field is 4 bits or less, the corresponding
coverage point contains a bin for each possible value of that field. If
the size of the field is greater than 4 bits, then the corresponding
coverage point contains three bins. The first bin, named min,
corresponds to the minimum value of that field (or ’0), the second
bin, named max, corresponds to the maximum value of that field (or
’1), and the third bin, named others corresponds to all other
values of that field. The weight of a coverpoint is equal to the number
of bins in that point.

You can sample field value coverage by using the
sample_field_values() function within the RAL registers.

By using this method, you can sample field values within the RAL
register itself, which would sample field coverage for all the fields
within the register by calling field_values.sample() for the
register.

User-Defined Field Value Coverage Bins

If the default field value bins are not suitable, there are many ways
coverage bins can be defined for a coverage corresponding to a field
value. In all cases, the weight of the coverage point is equal to the
number of bins.

 4-8

Functional Coverage Model Feedback

If symbolic values are defined for a field using the enum property, a
bin is implicitly defined for each symbolic value. The field
specification shown in Example 4-2 creates three bins, named AA,
BB, and CC, each corresponding to field values 0, 1, and 15
respectively.

Example 4-2 Defining implicit coverage bins via symbolic field values
field f2 {
 bits 8;
 enum { AA, BB, CC=15 }
 }

User-defined bins can be explicitly specified using the coverpoint
attribute. Example 4-3 illustrates how multiple coverage bins and bin
arrays can be defined using numerical and symbolic field values,
sets of values, and ranges of values.

The semantics of the bin specification is identical to the equivalent
bin specification in SystemVerilog, as specified in the section named
“Defining coverage points” in the 1800-2009 SystemVerilog
Language Reference Manual.

Example 4-3 Defining explicit coverage bins
field f2 {
 bits 8;
 enum { AA, BB, CC=15 }
 coverpoint {
 bins AAA = { 0, 12 }
 bins BBB [] = { 1, 2, AA, CC }
 bins CCC [3] = { 14,15, [BB : 10] }
 bins DDD = default
 }
 }

 4-9

Functional Coverage ModelFeedback

The coverpoint attribute supports user-defined bins
corresponding to ignore and illegal value sets, that is, both
ignore_bins and illegal_bins are supported along with bins
for representing ignore and illegal value sets correspondingly.

The bin specification is the same as bins. For the following example:

field f1 {
 bits 4;
 coverpoint {
 bins A = { 0, 12 }
 ignore_bins B = { 13 }
 illegal_bins C = { 14 }
 }
}

In UVM flow, the generated code for covergroup is as follows,

covergroup cg_vals ();
 option.per_instance = 1;
 f1_value : coverpoint f1.value {
 bins A = { 0, 12 };
 ignore_bins B = { 13 };
 illegal_bins C = { 14 };
 option.weight = 3;
 }
endgroup : cg_vals

Specifying Wildcard in Coverpoint Specification

The generated SystemVerilog code includes the wildcard keyword
prefixed to bin, as shown in the following example:

Input RALF:

register reg1 {
 field value (reg1) { bits 7;
 reset 7'b0;
 access rw;

 4-10

Functional Coverage Model Feedback

 coverpoint {
 wildcard bins wval = {8'b1???????};
 bins v[] = {[3'h0:3'h7]};
 }
 }
 field bit_7 (reg1_bit_7) { bits 1;
 reset 1'b0;
 access rw;
 }

}

In UVM flow, the generated code for covergroup is as follows:

covergroup cg_vals ();
 option.per_instance = 1;
 value_value : coverpoint value.value {
 wildcard bins wval = { 8'b1??????? };
 bins v[] = { [3'h0:3'h7] };
 option.weight = 2;
 }
 bit_7_value : coverpoint bit_7.value[0:0] {
 option.weight = 2;
 }
 endgroup : cg_vals

User-Defined Cross Coverage Specification

A cross coverage point between different field values within the
same register can be specified using the cross attribute. If a user-
defined cross-coverage point is labeled, it is possible to use that
cross-coverage point in another cross-coverage point.

Example 4-4 User-defined cross-coverage point
register r {

field f1 {...}
field f2 {...}
field f3 {...}

cross f1 f2 {

label xyz;
}

 4-11

Functional Coverage ModelFeedback

cross xyz f3;
}

RALF Cover Attribute

By default, all applicable elements in a RAL models are included in
the address map and register bits coverage models and all are
excluded from the field value coverage model. The cover attribute
can be used to specify the portions of the RAL model that should be
included in or excluded from a coverage model.

All elements in a RAL model can be specified with a cover attribute
to specify whether it and all of the sub-elements it contains are to be
included in or excluded from a particular coverage mode.

The address map, register bits, and field value coverage models are
identified by the letters "a", "b" and "f" respectively. A model element
is included in or excluded from a coverage model by prefixing its
identifying letter with a "+" or a "-’ respectively. For example, the
attribute cover +a+b-f specifies that this element is included in the
address map and register bits coverage model, but not in the field
values coverage model.

The coverage attribute for a RAL element are automatically inherited
from the higher-level element. If a coverage model is not specified in
a cover attribute, the inclusion or exclusion for that model is
inherited from the higher level. For example, the attribute cover+f
specifies that this element and all of its lower-level elements are to
be included in the field value coverage model. However, it does not
say anything about the inclusion or exclusion of this element with
respect to the other coverage models.

 4-12

Functional Coverage Model Feedback

It is important to note that, unless a system, block, register file or
register contains a cover+f attribute, no field value coverage model
is generated.

Example 4-5 Inherited cover attributes
system top {

block b {
cover -a+f #-a+b+f
…
register r1 {

cover -f #+a+b-f
}
register r2 {

cover -b #+a-b+f
}

}
system sub {

cover +f #+a+b+f
…

}
}

If a cover attribute is specified outside the domain attribute of a
multi-domain block or system, it applies to all domains specified in
that block or system. A cover attribute specified inside a domain
attribute applies to all registers and memories instantiated in that
domain.

 5-1

Randomizing Field ValuesFeedback

5
Randomizing Field Values 1

A RAL model can specify constraints on field values. If a field is
specified with a constraint attribute, then the value of the attribute
can be randomized. If a field is specified with no constraint
attributes, then it is a constant field that is never randomized. If you
require an unconstrained field that can be randomized, specify the
field with an empty constraint attribute. For example, fields f1
and f2 in Example 5-1 are randomized but field f3 is not.

Within a field specification, the constraints specify the valid values
for the field independently of any other field value. Within a register
specification, the constraints specify constraints on field values
based on the register where the field is instantiated or other field
values within the register.

Within a block or system specification, the constraints specify
constraints on field values based on the block or system where the
field is instantiated or other field values within the block or system.

 5-2

Randomizing Field Values Feedback

Example 5-1 Field Constraints
field f1 {
 bits 8;
 constraint spec {
 value <= ’h80;
 }
}

register r {
 field f1;
 field f2 {
 bits 8;
 constraint consistency {
 f1.value == f2.value;
 }
 }
 field f3 {
 bits 2;
 }
}

Example 5-2 RAL Model for Example 5-1
class ral_r1 extends uvm_ral_reg;
 rand uvm_ral_field f1;
 rand uvm_ral_field f2;

 constraint f1_spec {
 f1.value < ’h80;
 }
 constraint consistency {
 f1.value == f2.value;
 }
 constraint user_defined;
}

Field constraints are inlined in the register class that instantiates the
field to minimize the possibility of randomly selecting inconsistent
field values. Constraints declared in a field property in the RAL
description are not visible in the field abstraction class because they
are inlined in the register class that instantiates the field and not in
the field itself. If a field descriptor is directly randomized, it is

 5-3

Randomizing Field ValuesFeedback

unconstrained. Therefore, do not directly randomize field
descriptors. To randomize the content of fields subject to their
constraints, the register, block, or system descriptor must be
randomized. Once randomized, the field values can be written or
updated into the DUT.

Example 5-3 Improperly Randomizing Fields
ral_model.r1.f1.randomize();

Example 5-4 Properly Randomizing Fields
ral_model.r1.randomize();

The content of memories cannot be randomized.

 5-4

Randomizing Field Values Feedback

 6-1

Generating RALF and UVM Register Model from IP-XACTFeedback

6
Generating RALF and UVM Register Model
from IP-XACT 1

The registers and the memories in the design under verification are
usually described in a RALF file for UVM RAL. You create this
description based on your design register specification. The register
specification is part of an architecture/design document usually
created in a format such as FrameMaker, Microsoft Word, or a
spreadsheet. Since there is no common standard text format that is
used in the industry, every user has slightly different variations in
describing the register specifications. IP-XACT is becoming a
standard for describing register specifications.

After the register specification is converted to a common meta-data
model, such as the IP-XACT schema, you can use the ralgen utility
to automatically create a RALF file description. As discussed in
“RALF File Description Mechanism” , the RALF model is used by
ralgen to generate the corresponding RAL model for verification.

6-2

Generating RALF and UVM Register Model from IP-XACT Feedback

Definition of IP-XACT Schema

IP-XACT is a standard specification for eXtensible Markup
Language (XML) meta-data and tool interfaces that is an industry
intermediate specification format.

The IP-XACT standard specification is a mechanism to document
and exchange information about design IP, its characteristics, and its
required configuration and integration. The memory and the register
specification is also described using the IP-XACT schema. The IP-
XACT meta-data was conceived by the SPIRIT consortium.

The IP-XACT XML description is generated by the user from the
original register specification using a user-supplied conversion
script.

RALF File Description Mechanism

The default generated RALF model maps the XML specification file
to generic RALF syntax format. To generate the RALF file from an IP-
XACT file, ralgen is invoked with the -ipxact2ralf option.

For example, the following command can be used to generate a
RALF model for cpu_regs registers, if the cpu_reg.xml file exists:

% ralgen -ipxact2ralf cpu_regs.xml

The generated file is named cpu_regs.ralf, which contains
RALF descriptions of the registers.

 6-3

Generating RALF and UVM Register Model from IP-XACTFeedback

Example 6-1 shows the register description in IP-XACT schema, and
its equivalent RALF format.The following command can be used to
generate the SV model:

% ralgen -ipxact -uvm -t <top name> <input IP-XACT file>

Example 6-1 Generating RALF and UVM Register Model from IP-XACT

cpu_regs.xml:
...
<spirit:register>
 <spirit:name>r2</spirit:name>
 <spirit:addressOffset>0x8</spirit:addressOffset>
 <spirit:size>64</spirit:size>
 <spirit:access>read-write</spirit:access>
 <spirit:field>
 <spirit:name>f2</spirit:name>
 <spirit:bitOffset>0</spirit:bitOffset>
 <spirit:bitWidth>1</spirit:bitWidth>
 <spirit:access>read-write</spirit:access>
 </spirit:field>
 ...
</spirit:register>

cpu_regs.ralf:
...
register r2 @'h8 {
 field f2 {
 bits 1;
 access rw;
 }
...
}

In the above example, only a RALF file is generated. The next step
is to generate all the necessary RAL files by invoking ralgen a
second time, with appropriate switches, using the generated RALF
file.

6-4

Generating RALF and UVM Register Model from IP-XACT Feedback

Figure 6-1 shows the steps involved in this process.

Figure 6-1 RALF Generation and RAL Generation

For IP-XACT 1.5, use ralgen -uvm -ipxact <ipxact-file>
<other RALF options> to invoke ralgen as follows:

% ralgen -uvm -ipxact -t <top name> <input file>

For example, the following command is used to generate UVM RAL
from IP-XACT 1.5:

ralgen -ipxact -uvm -t top mycpu.xml

The above command generates the SV Model.

ralgen -ipxact -uvm -t top mycpu.xml -ipxact2ralf

The above command generates the RALF file.

The generated file, mycpu.xml contains RALF descriptions of the
registers, which acts as an input to ralgen with -uvm to generate the
SV UVM RAL model in a ral_top.sv file.

<reg.xml> file

<reg.ralf> file

RAL SV files

ralgen -ipxact2ralf

ralgen -...

 6-5

Generating RALF and UVM Register Model from IP-XACTFeedback

The -ipxact_files option is used to support multiple IP-XACT
files as input. This option provides the list of files to be translated.
The leaf-level components are dumped as standalone blocks, and
the rest of the blocks are composed on the top of these blocks.

To generate the RALF file, use the following command line:

ralgen -ipxact_files <file_containing_ipxact_file_list>

To generate the RAL model directly, use the following command line:

ralgen -ipxact -ipxact_files <file_containing_ipxact_file_list>

Supported IP-XACT Schema

The ralgen utility accepts IP-XACT schema version 1.5 descriptions
for registers and memories with a few limitations. The conversion
utility supports the XSD schema as this is the schema used for IP-
XACT descriptions. Support for IPXACT DIM to RALF mapping is
added.

Generic RALF Features and IP-XACT Mapping

Table 6-1 lists the generic IP-XACT features and their RALF
equivalents supported by this conversion utility.

6-6

Generating RALF and UVM Register Model from IP-XACT Feedback

Table 6-1 RALF Equivalents of IP-XACT Features

Table 6-2 lists the generic IP-XACT access modes and their RALF
equivalents supported by this conversion utility.

Table 6-2 RALF Equivalents of IP-XACT Access Modes

field
field name [{properties}]

Spirit IP-XACT 1.4 Description RALF Generic Feature

<spirit:name>name</spirit:name> name

<spirit:description>description</spirit:description> description, doc

<spirit:access>access_mode</spirit:access> access

 <spirit:reset> ... </spirit:reset> reset, hard_reset

<spirit:value>reset_value</spirit:value> reset_value

IP-XACT Definition access_mode RALF Register Access Mode

read-write rw

read-only ro

write-only wo

Spirit IP-XACT Equivalent RALF Feature

<spirit:field> ... </spirit:field> field

<spirit:bitOffset>field_bit_offset</spirit:addressOffset> @field_bit_offset

<spirit:bitWidth>number_of_bits_in_field</spirit:bitWidth> bits

<spirit:access>access_mode</spirit:access> access

 6-7

Generating RALF and UVM Register Model from IP-XACTFeedback

Note:
If the name of a field is unused or reserved, IP-XACT to RALF
translation treats it as a special case and it is dumped as an
unused or reserved field. Only the bits information is translated
from IP-XACT to RALF. The rest of the fields are ignored.

register
register name {properties}

Spirit IP-XACT Equivalent RALF Feature

<spirit:register> ... </spirit:register> register

<spirit:addressOffset>register_bit_offset</
spirit:addressOffset>

@’register_bit_offset

<spirit:size>width_of_register</spirit:size> bytes

<spirit:reset><spirit:value>reset_value</spirit:value>

Optional:
<spirit:mask>mask_value</spirit:mask></spirit:reset>

The reset value for a
field is specified at
register level. The
mask defines which bit
has the reset value.
For example:
field rdata_msb @'h4 {
.....
hard_reset 'ha;
}

<spirit:typeIdentifier>type_name</spirit:typeIdentifier> Ralgen generates
single definition for
multiple registers in
same description, if
the spirit:typeIdentifier
tag is specified in each
of these registers with
the same type name.

6-8

Generating RALF and UVM Register Model from IP-XACT Feedback

registerFile
registerFile name {properties}

block
block name {property}

Spirit IP-XACT Equivalent RALF Feature

<spirit:registerFile> ... </spirit:registerFile> regfile

<spirit:name>status</spirit:name> name

<spirit:description>Status register</spirit:description> doc

<spirit:addressOffset>regfile_bit_offset</
spirit:addressOffset>

@’regfile_bit_offset

<spirit:range>range</spirit:range> range

<spirit:size>width_of_register</spirit:size> bytes

<spirit:access>access_mode</spirit:access> access

Spirit IP-XACT Equivalent RALF Feature

<spirit:addressBlock> ... </spirit:addressBlock> block

<spirit:baseAddress>’block_start_address</
spirit:baseAddress>

@’block_start_address

 6-9

Generating RALF and UVM Register Model from IP-XACTFeedback

memory
memory name {property}

memoryRemap
memoryRemap name {property}

Spirit IP-XACT Equivalent RALF Feature

<spirit:usage>memory</spirit:usage> memory

<spirit:baseAddress>’memory_start_offset
</spirit:baseAddress>

@’memory_start_offset

< spirit:size>number_of_rows</spirit:size> [size]

<spirit:bitWidth>number_of_bits_in_each_row
</spirit:bitWidth>

bits, bytes

Spirit IP-XACT Equivalent RALF Feature

<spirit:memoryRemap> ... </spirit:memoryRemap> domain

<spirit:addressBlock> ...</spirit:addressBlock> block

<spirit:name>name</spirit:name> name

<spirit:baseAddress>’block_start_address</
spirit:baseAddress>

@’block_start_address

<spirit:range>range</spirit:range> range

<spirit:usage>memory</spirit:usage> usage

<spirit:access>access_mode</spirit:access> access

6-10

Generating RALF and UVM Register Model from IP-XACT Feedback

register array
register array

system
system name {property}

bank
bank name {property}

Spirit IP-XACT Equivalent RALF Feature

<spirit:register> ... </spirit:register> register

<spirit:baseAddress>’array_start_offset
</spirit:baseAddress>

@’array_start_offset

< spirit:size>width_of_register</spirit:size> bytes

<spirit:dim>number_of_array_elements</spirit:dim> [dim]

Spirit IP-XACT Equivalent RALF Feature

<spirit:memoryMap> ... </spirit:memoryMap> system

Spirit IP-XACT Equivalent RALF Feature

<spirit:bank > ... </spirit:bank > system

 6-11

Generating RALF and UVM Register Model from IP-XACTFeedback

serial/parallel bank

Constraints

IP-XACT provides an option to describe a set of constraint values on
the register fields using writeValueConstraint, which is
converted to an equivalent SystemVerilog constraint.

The writeValueConstraint option provides the following three
ways for specifying the constraint values:

• minimum, maximum

• useEnumeratedValues

• writeAsRead

minimum, maximum

It specifies the range of minimum to maximum values for a field to be
written with.

<spirit:writeValueConstraint>
<spirit:minimum>0x0</spirit:minimum>
<spirit:maximum>0x2</spirit:maximum>
<spirit:writeValueConstraint>

Spirit IP-XACT Equivalent RALF Feature

<spirit:bankAlignment="serial"></spirit:bankAlignment> Serial specifies that
the first item is
located at the bank's
base address

<spirit:bankAlignment="parallel"></spirit:bankAlignment> Parallel specifies
that each item is
located at the same
base address with
different bit offsets

6-12

Generating RALF and UVM Register Model from IP-XACT Feedback

The above IP-XACT specification provides the following constraint
block output:

constraint writeValueConstraint {
 value inside { ['h0:'h3] };
}

useEnumeratedValues

If the value of useEnumeratedValues is true, it implies that the
legal values to write to a field are the ones specified in the
enumeratedValues element for this field.

For example:

<spirit:enumeratedValues>
 <spirit:enumeratedValue spirit:usage="read-write">
 <spirit:name>oddParity</spirit:name>
 <spirit:value>0<spirit:value>
</spirit:enumeratedValue>
 <spirit:enumeratedValue spirit:usage="read-write">
 <spirit:name>evenParity</spirit:name>
 <spirit:value>1</spirit:value>
</spirit:enumeratedValue>
</spirit:enumeratedValues>
<spirit:writeValueConstraint>
 <spirit:useEnumeratedValues>true<spirit:useEnumeratedVal
ues>t
</spirit:writeValueConstraint>

It generates a constraint block as follows:

enum { oddParity = 0, evenParity = 1 }
constraint writeValueConstraint {
 value inside { 0, 1 };
}

 6-13

Generating RALF and UVM Register Model from IP-XACTFeedback

writeAsRead

If the value of writeAsRead is true, it implies that the only values
which can be written to this field are the ones which were previously
read.

Currently, this is not supported.

Access Types

The following access types are supported by IP-XACT which are
complaint to UVM RAL:

• read-write - RW

• read-only - RO

• write-only - WO

• read-writeOnce - W1

• writeOnce - W01

The following tables provide the IP-XACT mapping for the access
types:

Table 6-3 IP-XACT Mapping for access==read-write
access==read-write

modifiedWriteV
aluer

readAction

Unspecified clear set modify

Unspecified RW WRC WRS User-defined

oneToClear W1C n/a W1CRS User-defined

oneToSet W1S W1SRC n/a User-defined

6-14

Generating RALF and UVM Register Model from IP-XACT Feedback

onetoToggle W1T n/a n/a User-defined

zeroToClear W0C n/a W0CRS User-defined

zeroToSet W0S W0SRC n/a User-defined

zeroToToggle W0T n/a n/a User-defined

clear WC n/a WCRS User-defined

set WS WSRC n/a User-defined

modify User-defined User-defined User-defined User-defined

Table 6-4 IP-XACT Mapping for access==read-only
access==read-only

modifiedWriteV
aluer

readAction
Unspecified clear set modify

Unspecified RO RC RS User-defined

All others n/a n/a n/a n/a

Table 6-5 IP-XACT Mapping for access==write-only
access==write-only

modifiedWrite
Valuer Unspecified clear set modify
Unspecified WO n/a n/a n/a

clear W0C n/a n/a n/a

set W0S n/a n/a n/a

All others n/a n/a n/a n/a

Table 6-3 IP-XACT Mapping for access==read-write

 6-15

Generating RALF and UVM Register Model from IP-XACTFeedback

The following are the access types: RO, RW, RC, RS, WRC, WRS,
WC, WS, WSRC, WCRS, W1C, W1S, W1T, W0C, W0S, W1SRC,
W1CRS, W0SRC, W0CRS, WO, W0C, W0S, W1, W01.

The optional elements modifiedWriteValue and readAction
are introduced for IP-XACT and can be used to specify the remaining
access types of UVM RAL.

For modifiedWriteValue:

• oneToClear - W1C

• oneToSet - W1S

• oneToToggle - W1T

Table 6-6 IP-XACT Mapping for access==read-writeOnce
access==read-writeOnce

modifiedWrite
Valuer Unspecified clear set modify
Unspecified W1 n/a n/a n/a

All others n/a n/a n/a n/a

Table 6-7 IP-XACT Mapping for access==writeOnce
access==writeOnce

modifiedWrite
Valuer

readAction
Unspecified clear set modify

Unspecified W01 n/a n/a n/a

All others n/a n/a n/a n/a

6-16

Generating RALF and UVM Register Model from IP-XACT Feedback

• zeroToClear - W0C

• zeroToToggle - W0T

• clear - WC

• set - WS

For readAction:

• clear - RC

• set - RS

The combination of access types, modifiedWriteValue and
readAction is used to specify the remaining access types: WSRC,
WCRS, W1SRC, W1CRS, W0SRC, W0CRS, W0C, W0S.

For example:

<spirit:field>
<spirit:name>interrupt</spirit:name>
<spirit:bitOffset>0</spirit:bitOffset>
<spirit:bitWidth>1</spirit:bitWidth>
<spirit:access>read-write</spirit:access>
<spirit:modifiedWriteValue>oneToSet</

 spirit:modifiedWriteValue>
<spirit:readAction>clear</spirit:readAction>

</spirit:field>

The above specification results in the UVM access type W1SRC.
Similarly, a combination of the three inputs covers all the access
types defined by UVM. Any illegal combinations can be filtered out
and default it to read-write.

 6-17

Generating RALF and UVM Register Model from IP-XACTFeedback

Reserved and Parameters Attributes

The parameters attribute is supported as it does not have a
respective context on the UVM REG side, and hence it is ignored
with a warning. The reserved attribute is not supported.

Reset/Mask for Register

The reset values along with the mask for a field are specified only at
the register level in IP-XACT as shown in the following example. The
mask defines which bit of the register has a known reset value.

IP-XACT specification:

<spirit:register>
<spirit:name>srd_reg</spirit:name>
<spirit:addressOffset>0xb</spirit:addressOffset>
<spirit:size>8</spirit:size>
<spirit:access>read-only</spirit:access>
<spirit:reset>

<spirit:value>0xa5</spirit:value>
<spirit:mask>0xff</spirit:mask>

</spirit:reset>
<spirit:field>

<spirit:name>rdata_msb</spirit:name>
<spirit:bitOffset>4</spirit:bitOffset>
<spirit:bitWidth>4</spirit:bitWidth>

</spirit:field>
</spirit:register>

Equivalent RALF Specification:

 register srd_reg @'hb {
 bytes 1;
 field rdata_msb @'h4 {
 bits 4;

6-18

Generating RALF and UVM Register Model from IP-XACT Feedback

 access ro;
 hard_reset 'ha;
 }
 }

Resetting the Values of the Field Using <ipxact:resets>

You can use the <ipxact:resets> construct to describe the reset
values of the field. Each reset element defines the reset value for a
given reset type. The two values of resetTypeRef supported by
ralgen are: “HARD” and “SOFT”. If resetTypeRef is omitted in
<ipxact:reset>, the default value of HARD is considered.

The following is an example of IP-XACT specification for
<ipxact:resets>:

ipxact_resets.xml:
<ipxact:register>
 <ipxact:name>BasicRegister</ipxact:name>
 <ipxact:addressOffset>0x4</ipxact:addressOffset>
 <ipxact:size>8</ipxact:size>
 <ipxact:volatile>true</ipxact:volatile>
 <ipxact:access>read-writeOnce</ipxact:access>
 <ipxact:field>
 <ipxact:name>F1</ipxact:name>
 <ipxact:bitOffset>0</ipxact:bitOffset>
 <ipxact:resets>
 <ipxact:reset>
 <ipxact:value>0x0</ipxact:value>
 </ipxact:reset>
 <ipxact:reset resetTypeRef="SOFT">
 <ipxact:value>0xf</ipxact:value>
 <ipxact:mask>0xa</ipxact:mask>
 </ipxact:reset>
 </ipxact:resets>
 <ipxact:bitWidth>4</ipxact:bitWidth>
 </ipxact:field>
 <ipxact:field>
 <ipxact:name>F2</ipxact:name>

 6-19

Generating RALF and UVM Register Model from IP-XACTFeedback

 <ipxact:bitOffset>0</ipxact:bitOffset>
 <ipxact:bitWidth>4</ipxact:bitWidth>
 </ipxact:field>
</ipxact:register>

The preceding IP-XACT code results in the following RALF:

ipxact_resets.ralf:
register BasicRegister @0x4 {
 bytes 1;
 field F1 @'h0 {
 bits 4;
 access rw;
 volatile 1
 hard_reset 'h0;
 soft_reset 'ha;
 }
 field F2 @'h0 {
 bits 4;
 access rw;
 volatile 1
 }
}

Volatile Construct

The ralgen utility supports the <ipxact:volatile> construct
and it maps to the volatile construct field in RALF.

You can add the <ipxact:volatile> construct at field/register/
block level. If nothing is specified at block level, false value is
considered. In case, nothing is specified at the register/field level, the
value of the container block/register is inherited respectively. If the
value is specified at register/field level, it overrides the inherited
value.

6-20

Generating RALF and UVM Register Model from IP-XACT Feedback

You can see the final computed volatility at the field level as the value
of volatile construct/bit is generated in the RALF/SystemVerilog code
by ralgen.

Following is an example of IP-XACT specification for
<ipxact:volatile>:

ipxact_volatile.xml:
<ipxact:addressBlock>
 <ipxact:name>VolatileAddressBlock</ipxact:name>
 <ipxact:baseAddress>0x0</ipxact:baseAddress>
 <ipxact:usage>register</ipxact:usage>
 <ipxact:volatile>true</ipxact:volatile>
 <ipxact:register>
 <ipxact:name>VolatileRegister</ipxact:name>
 <ipxact:addressOffset>0x4</ipxact:addressOffset>
 <ipxact:size>32</ipxact:size>
 <ipxact:field>
 <ipxact:name>NonVolatileField</ipxact:name>
 <ipxact:bitOffset>0</ipxact:bitOffset>
 <ipxact:bitWidth>16</ipxact:bitWidth>
 <ipxact:volatile>false</ipxact:volatile>
 </ipxact:field>
 <ipxact:field>
 <ipxact:name>VolatileField</ipxact:name>
 <ipxact:bitOffset>15</ipxact:bitOffset>
 <ipxact:bitWidth>16</ipxact:bitWidth>
 </ipxact:field>
 </ipxact:register>
 <ipxact:register>
 <ipxact:name>NonVolatileRegister</ipxact:name>
 <ipxact:addressOffset>0x8</ipxact:addressOffset>
 <ipxact:size>32</ipxact:size>
 <ipxact:volatile>false</ipxact:volatile>
 <ipxact:field>
 <ipxact:name>NonVolatileField</ipxact:name>
 <ipxact:bitOffset>0</ipxact:bitOffset>
 <ipxact:bitWidth>16</ipxact:bitWidth>
 </ipxact:field>
 <ipxact:field>
 <ipxact:name>VolatileField</ipxact:name>

 6-21

Generating RALF and UVM Register Model from IP-XACTFeedback

 <ipxact:bitOffset>15</ipxact:bitOffset>
 <ipxact:bitWidth>16</ipxact:bitWidth>
 <ipxact:volatile>true</ipxact:volatile>
 </ipxact:field>
 </ipxact:register>
</ipxact:addressBlock>

The preceding IP-XACT code results in the following RALF:

ipxact_volatile.ralf
block VolatileAddressBlock @0x0 {
 register VolatileRegister @0x4 {
 bytes 4;
 field NonVolatileField @'h0 {
 bits 16;
 access rw;
 }
 field VolatileField @'hf {
 bits 16;
 access rw;
 volatile 1
 }
 }
 register NonVolatileRegister @0x8 {
 bytes 4;
 field NonVolatileField @'h0 {
 bits 16;
 access rw;
 }
 field VolatileField @'hf {
 bits 16;
 access rw;
 volatile 1
 }
 }
}

As illustrated in this example, the VolatileAddressBlock
address block has explicit volatile specification set to true. Both
VolatileRegister and NonVolatileRegister registers

6-22

Generating RALF and UVM Register Model from IP-XACT Feedback

inherit true value, unless and until an explicit volatile tag is specified
with the false value. In this case, the NonVolatileRegister
register has such a specification.

Similarly, the fields inside VolatileRegister and
NonVolatileRegister inherit volatile value as true and false
respectively, unless an explicit specification is provided.

The NonVolatileField field inside VolatileRegister and the
VolatileField inside NonVolatileRegister explicitly specify
the volatile value to override the inherited values.

Vendor Extensions

All Synopsys vendor extensions are located in the
<spirit:vendorExtensions> element.

All Synopsys vendor extensions are further contained in a
<snps:spirit-element> container. For example, all Synopsys
vendor extensions to the <spirit:register> element are
contained in a <snps:register> container element.

All other vendor extensions are ignored.

The vendor extensions make an IP-XACT specification inherently
vendor-specific. If an IP-XACT specification contains vendor
extensions from another vendor that specify the same information, it
is necessary to first translate these third-party extensions into the
equivalent Synopsys extensions.

Any IP-XACT-compliant tool should ignore the Synopsys extensions,
the same way the Synopsys tools ignore the non-Synopsys
extensions.

 6-23

Generating RALF and UVM Register Model from IP-XACTFeedback

It is recommended that the equivalent Synopsys vendor extensions
be added to the <spirit:vendorExtensions> element, thus
maintaining the compatibility of the IP-XACT specification with its
original third-party tool environment.

Example:

<spirit:vendorExtensions>
<3rdparty:extension>
...
</3rdparty:extension>
<snps:extension>
...
</snps:extension>

</spirit:vendorExtensions>

Reset Values

The reset override of a particular register in a register array or a
particular field is specified using the <snps:changeResets>
element inside addressBlock and regfile tags.

Example:

<spirit:vendorExtensions>
<snps:changeResets>
<snps:changeReset>
<snps:name>COUNTERS[10]</snps:name>
<snps:value>0x1</snps:value>
</snps:changeReset>
</snps:changeResets>
</spirit:vendorExtensions>

HDL Paths

The HDL path added by an IP-XACT structural element is specified
using the <snps:hdl_path> element.

6-24

Generating RALF and UVM Register Model from IP-XACT Feedback

Example:

<spirit:register>
<spirit:name>srd_reg</spirit:name>
<spirit:addressOffset>0xb</spirit:addressOffset>
<spirit:size>8</spirit:size>
<spirit:access>read-only</spirit:access>
<spirit:vendorExtensions>
<snps:register>
<snps:hdl_path>srd_reg</snps:hdl_path>
</snps:register>
</spirit:vendorExtensions>
<spirit:reset>
<spirit:value>0xa5</spirit:value>
<spirit:mask>0xff</spirit:mask>
</spirit:reset>
<spirit:field>
<spirit:name>rdata_lsb</spirit:name>
<spirit:bitOffset>0</spirit:bitOffset>
<spirit:bitWidth>4</spirit:bitWidth>
<spirit:vendorExtensions>
<snps:field>
<snps:hdl_path>rdata_lsb</snps:hdl_path>
</snps:field>
</spirit:vendorExtensions>
</spirit:field>
</spirit:register>

Exclusion from Pre-Defined Tests

To exclude a register from all the tests, all read tests, or all write tests,
the <snps:csrSetting> element is specified inside the
<snps:register> element in the corresponding register. The
content of this element must be NO_CSR_TEST, NO_CSR_R_TEST,
or NO_CSR_W_TEST respectively.

 6-25

Generating RALF and UVM Register Model from IP-XACTFeedback

The mapping from NO_CSR_*TEST to the UVM pre-defined
sequences is as follows:

Note:
If you are generating a RALF file from IP-XACT (not generating
the SystemVerilog model directly), then you must provide the
-uvm option with the -ipxact2ralf option. For example,
ralgen -uvm -ipxact2ralf <ralf model file>

Example:

<spirit:vendorExtensions>
<snps:register>
<snps:csrSetting>NO_CSR_TEST</snps:csrSetting>
</snps:register>
</spirit:vendorExtensions>

NO_CSR_TEST NO_RAL_TESTS 1,
NO_REG_TESTS 1

NO_CSR_R_TEST NO_BIT_BASH 1, NO_MEM_ACCESS 1,
NO_MEM_WALK 1, NO_REG_ACCESS 1,
NO_SHARED_ACCESS 1, NO_HW_RESET 1,
NO_REG_BIT_BASH_TEST 1,
NO_REG_MEM_ACCESS_TEST 1,
NO_REG_MEM_WALK_TEST 1,
NO_REG_REG_ACCESS_TEST 1,
NO_REG_SHARED_ACCESS_TEST 1,
NO_REG_HW_RESET_TEST 1

NO_CSR_W_TEST NO_BIT_BASH 1, NO_MEM_ACCESS 1,
NO_MEM_WALK 1, NO_REG_ACCESS 1,
NO_SHARED_ACCESS 1, NO_HW_TEST 1,
NO_REG_BIT_BASH_TEST 1,
NO_REG_MEM_ACCESS_TEST 1,
NO_REG_MEM_WALK_TEST 1,
NO_REG_REG_ACCESS_TEST 1,
NO_REG_SHARED_ACCESS_TEST 1,
NO_REG_HW_RESET_TEST 1

6-26

Generating RALF and UVM Register Model from IP-XACT Feedback

Non-Zero Start Array Index

If the <sprit:dim> element is used, an array indexed from 0 to
dim-1 is inferred. If a different starting index is desired, specify the
bounds of the array index using <snps:x_from> and
<snps:x_to> elements within a <snps:register> element. The
start and end index must be static and known at model generation
time.

Example:

<spirit:vendorExtensions>
<snps:register>
<snps:x_from>1</snps:x_from>
<snps:x_to>5</snps:x_to>
</snps:register>
</spirit:vendorExtensions>

User-Defined Array Address Stride

By default, the consecutive registers in a register array are located
in consecutive address offsets to minimize the overall address space
taken by the entire array and avoid unused addresses. If a different
address stride is required, it can be specified using the
<snps:incr> element within a <snps:register> element. The
address stride value must be static and known at model-generation
time.

This extension is only valid in the <snps:register> element with
a <spirit:dim> element or <snps:x_from> and <snps:x_to>
extensions.

Example:

<spirit:vendorExtensions>
<snps:register>

 6-27

Generating RALF and UVM Register Model from IP-XACTFeedback

<snps:incr>4</snps:incr>
</snps:register>
</spirit:vendorExtensions>

Attributes

The RALF attributes are specified using the <snps:attribute>
element within a <snps:attributes> extension as follows:

<spirit:vendorExtensions>
 <snps:attributes>
 <snps:attribute>

<snps:name></snps:name>
<snps:value></snps:value>
<snps:type></snps:type>

 </snps:attribute>
 <snps:attribute>
 ….
 </snps:attribute>
 …
 </snps:attributes>
</spirit:vendorExtensions>

Where,

• <snps:attribute> can occur once or multiple times and each
of the attribute container comprises of the following elements:

- <snps:name> specifies the attribute name.

- <snps:value> specifies the value to be dumped.

- <snps:type> is an optional element and can accept one of
the following three strings:

-string

-integer

6-28

Generating RALF and UVM Register Model from IP-XACT Feedback

-bit

If <snps:type> is not specified, it is assumed to be of bit
type.

This vendor extension is supported inside field, register, and
addressBlock. The IP-XACT vendorExtensions map to the
RALF attributes as follows:

attributes
{
name1 value1, name2, value2 …
}

Example:

<spirit:register>
 <spirit:name>PC</spirit:name>
 <spirit:addressOffset>0x8</spirit:addressOffset>
 <spirit:size>64</spirit:size>
 <spirit:access>read-write</spirit:access>
 <spirit:vendorExtensions>
 <snps:attributes>
 <snps:attribute>
 <snps:name>NO_REG_TESTS</snps:name>
 <snps:value>1</snps:value>
 <snps:type>bit</snps:type>
 </snps:attribute>
 </snps:attributes>
</spirit:vendorExtensions>
...
</spirit:register>

The preceding IP-XACT code results in the following RALF:

register PC @0x8 {
bytes 8;
…
attributes {

 6-29

Generating RALF and UVM Register Model from IP-XACTFeedback

NO_REG_TESTS 1
}

}

User Code

You can use the user_code vendor extension to add SystemVerilog
properties and code inside the generated RAL classes. For details
about how to use the user_code construct, see “Inserting the
User-Defined Code Inside the Generated RAL Model Classes” .

You can specify user code using the <snps:user_code> element
inside addressBlock, register, and regfile tags.

The RALF construct is supported in IP-XACT via the following
vendor extensions in address block/regfile/register:

<spirit:vendorExtensions>
<snps:user_codes>
<snps:user_code>
<snps:scope>new</snps:scope>
<snps:body>body_of_the_user_code</snps:body>
</snps:user_code>
</snps:user_code>
</spirit:vendorExtensions>

Using <snps:scope> is optional; if unspecified, it defaults to the
scope of the class itself. Currently, <snps:scope> only accepts
"new" as the scope name. If you specify this, then the corresponding
code is placed in the build methods.

6-30

Generating RALF and UVM Register Model from IP-XACT Feedback

Register CallBack Class

The register_cb_class RALF construct is supported in IP-
XACT via the following vendor extension. This extension is valid only
in the top-level container tag of the xml (ipxact:component/
ipxact:memoryMaps) tag.

<snps:register_cbs>
 <snps:register_cb>

<snps:name>class_name <snps:name>
 <snps:var_declarations>

Additional Class properties
 </snps:var_declarations>
 <snps:new_method>
 <snps:args>
 </snps:args>
 <snps:body>
 </snps:body>
 </snps:new_method>
 <snps:pre_write_method>
<snps:body>
Content for pre write method
 </snps:body>
 </snps:pre_write_method>
 <snps:post_write_method>
<snps:body>
Content for post write method
 </snps:body>
 </snps:post_write_method>
 <snps:post_read_method>
<snps:body>
Content for post read method
 </snps:body>
 </snps:post_read_method>
 <snps:pre_read_method>
<snps:body>
Content for pre read method
 </snps:body>
 </snps:pre_read_method>
 <snps:register_cb>
</snps:register_cbs>

 6-31

Generating RALF and UVM Register Model from IP-XACTFeedback

This translates to the following code in RALF:

register_cb <class_name> {
 var_declarations {
}
 new_method {arg_list} {
//code to be exexcuted in new method
 }

pre_write_method {
//code to be exexcuted in pre_write method
}
post_write_method {
…
}

pre_read_method {
…
}
post_read_method {
…
}

}

Adding Register Callback

The add_reg_cb RALF construct is supported using the following
vendor extensions. This extension is valid only in
ipxact:register, ipxact:addressBlock, and
ipxact:registerFile tags.

You can specify multiple snps:add_reg_cb tags inside
snps:add_reg_cbs. Only one snps:add_reg_cbs for each
register/registerFile/addressBlock is read.

The following is the syntax:

<snps:add_reg_cbs>
<snps:add_reg_cb>

6-32

Generating RALF and UVM Register Model from IP-XACT Feedback

<snps:cb_name>Callback class name</snps_cb_name>
<snps:args>new method args</snps:args>
</snps:add_reg_cb>
<snps:add_reg_cb>
....
</snps:add_reg_cb>
</snps:add_reg_cbs>

Inside the ipxact:register tag, the reg_inst_name keyword is
not required, and the generated code uses the “this” keyword.

This translates to the following code in RALF:

add_reg_cb [register_instance_name] <cb_name> '(' args_to_new ')'

The register_instance_name is not generated for the
add_reg_cb vendor extension placed inside the
ipxact:register tag.

Adding Register Callbacks to Fields

In the RALF syntax, a new construct field_cb_class is added to
specify the field callback class. The construct add_reg_cb allows
adding callbacks for fields:

add_reg_cb <field_name>[array_subscript]

<callback_class_name> <callback_instance_name

Example

The following is a (partial) RALF file:

field_cb_class broadcast_data_cb {
 var_declarations {
 uvm_reg regs[$];
 }

 6-33

Generating RALF and UVM Register Model from IP-XACTFeedback

 new_method (uvm_reg regs[$] = '{}) {
 this.regs = regs;
 }
 post_write_method {
 foreach (regs[i]) begin
 regs[i].set(rw.value[0]);
 end
 }
}
block slave {
 bytes 4;
 register DATA1 {
 field value @'h0 {
 bits 32;
 access rw;
 }
 add_reg_cb value broadcast_data_cb ({DATA0, DATA1,
DATA2});
}

Following is the generated SystemVerilog code:

class broadcast_data_cb extends uvm_reg_cbs;
 `uvm_object_utils(broadcast_data_cb)
 uvm_reg regs[$];
 function new(string name = "broadcast_data_cb", uvm_reg
regs[$] = '{});
 super.new(name);
 this.regs = regs;
 endfunction
 virtual task post_write(uvm_reg_item rw);
 foreach (regs[i]) begin
 regs[i].set(rw.value[0]);
 end
 endtask
endclass

class ral_reg_slave_DATA1 extends uvm_reg;
 rand uvm_reg_field value;

6-34

Generating RALF and UVM Register Model from IP-XACT Feedback

 function new(string name = "slave_DATA1");
 super.new(name, 32,build_coverage(UVM_NO_COVERAGE));
 endfunction: new
 virtual function void build();
 this.value =
uvm_reg_field::type_id::create("value",,get_full_name());
 this.value.configure(this, 32, 0, "RW", 0, 32'h0, 0,
0, 1);
 begin
 broadcast_data_cb reg_cb = new("broadcast_data_cb",
{DATA0, DATA1, DATA2});
 uvm_reg_field_cb::add(value, reg_cb);
 end
 endfunction: build

 `uvm_object_utils(ral_reg_slave_DATA1)

endclass : ral_reg_slave_DATA1

Specifying External Callback Class With add_reg_cb

There can be use cases, where callback classes are pre-defined/
pre-written, and callback class definition is not available in RALF.

This is to tell Ralgen not to expect the callback class definition within
the specified RALF by adding external_cb_class keyword to the
add_reg_cb construct. The external callback class definitions can
be either included as part of RALF model, by using include_file
construct or can be directly included in compile.

Following is the syntax:

add_reg_cb <Identifier> <Identifier><arguments>
external_cb_class

 6-35

Generating RALF and UVM Register Model from IP-XACTFeedback

Example

In the generated SystemVerilog code, you must import the external
Verilog file:

‘include “External_file.sv”
Ralf_code <file.ralf>
register DATA {
 field value @'h0 {
 bits 32;
 access rw;
 }
}
block slave {
 bytes 4;
 register DATA=broadcast_data @'hff;
 add_reg_cb broadcast_data broadcast_data_cb ({DATA0, DATA1,
DATA2});
}
<External_file.sv>
class broadcast_data_cb extends uvm_reg_cbs;
 `uvm_object_utils(broadcast_data_cb)
 uvm_reg regs[$];
 function new(string name = "broadcast_data_cb", uvm_reg
regs[$] = '{});
 super.new(name);
 this.regs = regs;
 endfunction
 virtual task post_write(uvm_reg_item rw);
 foreach (regs[i]) begin
 regs[i].set(rw.value[0]);
 end
 endtask
endclass

Following is the generated SystemVerilog code:

`ifndef RAL_SLAVE
`define RAL_SLAVE

6-36

Generating RALF and UVM Register Model from IP-XACT Feedback

import uvm_pkg::*;
‘include “External_file.sv”
class ral_reg_DATA extends uvm_reg;
 rand uvm_reg_field value;

 function new(string name = "DATA");
 super.new(name, 32,build_coverage(UVM_NO_COVERAGE));
 endfunction: new
 virtual function void build();
 this.value =
uvm_reg_field::type_id::create("value",,get_full_name());
 this.value.configure(this, 32, 0, "RW", 0, 32'h0, 0,
0, 1);
 endfunction: build

 `uvm_object_utils(ral_reg_DATA)

endclass : ral_reg_DATA
class ral_block_slave extends uvm_reg_block;
 rand ral_reg_DATA broadcast_data;
 rand uvm_reg_field broadcast_data_value;
 rand uvm_reg_field value;

 function new(string name = "slave");
 super.new(name, build_coverage(UVM_NO_COVERAGE));
 endfunction: new

 virtual function void build();
 this.default_map = create_map("", 0, 4,
UVM_LITTLE_ENDIAN, 0);
 this.broadcast_data =
ral_reg_DATA::type_id::create("broadcast_data",,get_full_n
ame());
 this.broadcast_data.configure(this, null, "");
 this.broadcast_data.build();
 this.default_map.add_reg(this.broadcast_data,
`UVM_REG_ADDR_WIDTH'hFF, "RW", 0);
 this.broadcast_data_value = this.broadcast_data.value;
 this.value = this.broadcast_data.value;
 begin
 broadcast_data_cb reg_cb = new("broadcast_data_cb",
{DATA0, DATA1, DATA2});

 6-37

Generating RALF and UVM Register Model from IP-XACTFeedback

 uvm_reg_cb::add(broadcast_data, reg_cb);
 end
 endfunction : build

 `uvm_object_utils(ral_block_slave)

endclass : ral_block_slave
`endif

Limitations of IP-XACT to RALF Feature Mapping

The following are the limitations of IP-XACT to RALF feature
mapping:

• The ralgen utility has no mapping for the IP-XACT memory
schema features or syntax listed in Table 6-8.

Table 6-8 IP-XACT Memory Schema Features With No RALF Mapping
reserved

ref: parameters

values: value/name/description

suspaceMap

masterRef

nameGroup

coverage

endianess

virtual register

6-38

Generating RALF and UVM Register Model from IP-XACT Feedback

• There are some RALF features with no direct equivalence as yet
in the IP-XACT 1.4 memory/registers schema. Table 6-9 lists the
RALF syntax items that are not available in IP-XACT 1.4 syntax.

• Nested registerFile is not supported.

Table 6-9 RALF Features with No Direct IP-XACT 1.4 Equivalent
domain

initial

initial_value

reset_type

soft_reset

little

big

fifo_ls

fifo_ms

endian

endian_value

 7-1

UVM Register C++ InterfaceFeedback

7
UVM Register C++ Interface 1

The UVM register C interface allows firmware and application-level
code to be developed and debugged on a simulation of the design.
For runtime performance reasons, only the lower layers of an
application are simulated.

You can access the fields, registers, and memories included in a
UVM register model in C code through C API. The C code is
executed natively on the same workstation that is running the
SystemVerilog simulation, eliminating the need for an instruction set
simulator or a RTL model of the processor. You can compile the
same C code later for the target execution processor.

The C++ interface is made visible by including the following file in
any C++ source file accessing registers in your design:

#include "snps_reg_rw_api.h"

7-2

UVM Register C++ Interface Feedback

The API defines the following set of functions to read and write
registers, overloaded for different register sizes.

namespace snps_reg {
 inline volatile uint8 regRead(volatile uint8 *addr);
 inline volatile uint16 regRead(volatile uint16 *addr);
 inline volatile uint32 regRead(volatile uint32 *addr);

 inline volatile void regWrite(volatile uint8 *addr, uint8
val);
 inline volatile void regWrite(volatile uint16 *addr,
uint16 val);
 inline volatile void regWrite(volatile uint32 *addr,
uint32 val);
}

There are two versions of the UVM register C++ API that can be
used. One is designed to interface to the UVM register model
running in the SystemVerilog simulator using the Direct
Programming Interface. The other is pure stand-alone C++ code and
is designed to be compiled on the target processor in the final
application. This allows the firmware and application-level code to be
verified against a simulation and then used, unmodified, in the final
application. The version of the C++ API that is used is determined at
compile time by including the snps_reg_rw_api.h file from one of
the two directories.

To compile your C++ code for execution on the target processor, use
pure C++ code API by specifying the following compile-time options:

% g++ -c -I$UVM_HOME/include/pureC …

To compile your C++ code for execution on the host computer and
co-simulation with the UVM register model, use DPI C++ code API
by specifying the following compile-time options:

% g++ -c -I$UVM_HOME/include/uvmC …

 7-3

UVM Register C++ InterfaceFeedback

The types uint8, uint16 and uint32 are of course machine-
dependent and must be defined before including the
snps_reg_rw_api.h file. For your convenience, a set of default
type definitions are provided in the file $UVM_HOME/include/
snps_reg_uints.h.

C++ Register Model

Ralgen creates a hierarchical model of the registers found in the
design and accessible through a specific address map.

% ralgen …

A class is defined for every structural component in the register
specification. Each class contains instances of lower-level structural
components and a method of returning the address of every register
it contains. If a field within a register is the sole field in its byte lane,
a method returning the address of that field also exists. To specify the
address of the register or field to access, call its corresponding
method through a hierarchical reference in the register model.

reqs = snps_reg::regRead(usbdev.status());
snps_reg::regWrite(usbdev.intrMask(), 0xFFFF);

The device driver code should be written in functions accepting a
reference to the register model corresponding to the device. The
register model is then used to identify the registers to be accessed.

int
usb_dev_isr(usbdev_t &dev)
{
 int reqs = snps_reg::regRead(dev.status());
 regWrite(dev.status(), reqs);
 if (reqs & 0x0001) usb_dev_tx_rdy(dev);
 if (reqs & 0x0002) usb_dev_rx_rdy(dev);

7-4

UVM Register C++ Interface Feedback

}

The C++ register model is limited to registers that can be accessed
using a single read or write operation with a 32-bit data bus, which
means that registers are limited to 32 bits. If the architecture of the
processor and implementation of the device supports byte-level
access, individual bytes and words are accessible as fields within a
register.

For example, the following register specification

block comp1 {
 bytes 4;

 register regA @ 0x00 {
 field data { bits 32; }
 }

 register regB @ 0x04 {
 field fldA { bits 8; }
 field fldB { bits 8; }
 field fldC { bits 16; }
 }
 register regC @ 0x08 {
 field fldA { bits 16; }
 field fldD { bits 8; }
 }
}

yields the following C++ register model:

class comp1_t
{
 public:
 inline volatile uint32 *regA();
 inline volatile uint32 *regB();
 inline volatile uint8 *fldA();
 inline volatile uint8 *fldB();
 inline volatile uint16 *fldC();
 inline volatile uint32 *regC();
 inline volatile uint16 *regC_fldA();

 7-5

UVM Register C++ InterfaceFeedback

 inline volatile uint8 *fldD();
}

Instantiating the Register Model

Before the device driver code can be invoked, an instance of the
register model must exist. The register model being instantiated
depends on whether the device driver code is called by the target
application or by the UVM simulation.

When using the device driver code in the target application, the
target application code must instantiate the register model,
specifying the base address of the device in question. Multiple
register models may be instantiated.

usbdev_t usb0("usb0", 0x100000);
usbdev_t usb1("usb1", 0x110000);

int
main(char **argv, int argc)
{
 ...
}

When using the device driver code from the UVM simulation, it is
necessary for the C++ code to be called by the simulation to be
executed. The application software's main() routine must be
replaced by one or more entry points known to the simulation
through the DPI interface. The DPI-C entry point creates an instance
of the register model based on the context specified by the UVM
simulation.

extern "C" int
usb_dev_isr_entry(int context)
{
 usbdev_t usb(context);

7-6

UVM Register C++ Interface Feedback

 return usb_dev_isr(usb);
}

The C++ code can then be called from UVM simulation by calling its
corresponding entry point and specifying the context of the register
model. You must also include the snps_reg.svh file that is shipped
with UVM libraries present in VCS installation directory.

‘include "vcs/snps_reg.svh"
...
import "DPI-C" function int usb_dev_isr_entry(int ctxt);
...
ral_sys_soc soc = new("soc", 'h10000);
soc.build();
...
usb_dev_isr_entry(snps_reg::create_context(soc.usb0));

Retrieving IDs of All the Registers in a Block/System

In uvmC and pureC flow, you can use the following API to retrieve
the list of all the registers present in a block or a system:

int getRegisters(snps_reg::reg_add**regs, int hier = 1)

Here,

regs: It is allocated and populated with the register information
by the API. Each element of this array corresponds to a register
and can be used directly as an argument to register access
functions.

hier: If specified as 1, it recursively includes the registers in sub-
blocks. If specified as 0, it limits the results returned to the block
on which it is invoked.

 7-7

UVM Register C++ InterfaceFeedback

Note:
This API function is added in the regmodel base class, and the
functionality is guarded under the
SNPS_REG_ENABLE_REG_ITER pre-processor directive. To
enable this functionality, you must use the
-DSNPS_REG_ENABLE_REG_ITER option for C compilation.

Following is an example that illustrates the usage of these functions:

comp1_t dev(context);
snps_reg::reg_addr * regs;
int count;

count = dev.getRegisters(®s);

for (int ind = 0; i < count; i++) {
regWrite(regs[ind], <some_value>);

}

Co-Simulation Execution Timeline

When executing with a simulation of the design, all C++ code
executes automatically. It is unlike the real application code running
as object code on a real processor, where the execution of the code
happens concurrently with other processing in the neighboring
hardware.

When the C++ code executes, only the code performs any form of
processing and the simulation of the rest of the design is frozen. The
only way for the design simulation to proceed, is for the C++ code to
return, or for the C code to perform a read or write operation through
the register model. In the latter case, once the read or write operation
completes and the control is returned back to the C code, the
simulation is again frozen.

7-8

UVM Register C++ Interface Feedback

Hence, the entire execution timeline in the C++ code occurs in zero-
time in the simulation timeline. This has an important impact on
runtime performance of how the C++ code interacts with the design.

If a polling strategy is used, the simulation has the opportunity to
advance only during the execution of the repeated polling read
cycles. It would likely require hundreds of such read cycles for the
design to reach a state that is relevant and significant for the
application software. With a physical device, this can happen in less
than a microsecond. However, in a simulation, this would require a
lot of processing for simulating essentially useless read cycles and
exchanging data between the C++ world and the simulation world.

If an interrupt-driven strategy is used, the simulation proceeds until
something of interest to the application software has happened
before transferring control to the C++ code and only the necessary
read and write operations needs to be performed. Therefore, it is
important that you use a service-based approach as much as
possible.

It is also important that the execution of the C++ code not be blocked
by an external event such as waiting for user input or a file to be
unlocked. This prevents the simulation from moving forward while it
is blocked. If the application software requires such synchronization,
it must use an asynchronous interrupt-driven approach.

 A-1

RALF SyntaxFeedback

A
RALF Syntax A

A RALF description is a Tcl 8.5 file. Therefore, it is possible to use
programming constructs such as loops and variables to rapidly and
concisely construct large register sets and memory definitions. You
can also use the Tcl source command to perform multiple and
hierarchical register specification management. Also, you can use
Tcl expressions to specify register offset values, base values and
register names.

The semi-colon is used as a separator and is not necessary
immediately after or before a closing curly brackets.

This appendix contains the following topics:

• “Grammar Notation”

• “Useful Tcl Commands”

• “RALF Construct Summary”

A-2

RALF Syntax Feedback

Grammar Notation

The following notations are used to specify the exact syntax of RALF
descriptions:

This section contains the following topic:

• “Reserved Words”

Reserved Words

In addition to the SystemVerilog and OpenVera reserved words, the
following words are reserved and cannot be used as user-defined
identifiers:

normal Literal items

italics User-specified identifiers

[...] Optional items

<...> Repeated items, 1 to N times

[<...>] Optional repeated items, 0 to N times

...|... A choice of items

access field regfile

bits hard_reset register

block hdl_path reset

bytes initial shared

constraint left_to_right size

doc memory soft_reset

domain noise system

endian read virtual write

write

 A-3

RALF SyntaxFeedback

Useful Tcl Commands

Considering a RALF description is a Tcl file, the full power of the Tcl
language becomes available. The following Tcl commands are likely
to be useful:

#comment

Indicates single-line comments with characters following a #
considered as comments.

set name value

Sets the specified variable to the specified value. Allows the use
of variable names as mnemonics, using Tcl syntax to set and get
variable values.

source filename

Includes the specified Tcl file. Inclusion of files enable hierarchical
RALF descriptions. The filename can have an absolute path or
relative path.

for {set i 0} {$i < 10} {incr i} {
 ...
}

For loops can be used to concisely create multiple fields, registers,
memories, and blocks specifications. Any RALF property value
can be based on the value of the loop index variable or other
variables.

if {$var} {
 ...
}

A-4

RALF Syntax Feedback

Conditionally interprets Tcl statements or RALF specifications.
Allows the selection or exclusion of elements in a RALF
description.

You can view a complete list of available Tcl commands by visiting
the following web address:

http://www.tcl.tk/man/tcl8.5/TclCmd/contents.htm

This section contains the following topic:

• “Tcl Syntax and FAQ”

Tcl Syntax and FAQ

The Tcl syntax rules can be found by visiting the following web
address:

http://www.tcl.tk/man/tcl8.5/TclCmd/Tcl.htm

Note that ralgen preprocesses the RALF file to escape some of its
syntax elements that have special meaning in Tcl. For example, the
[and] used to specify arrays are properly escaped to avoid
command substitution.

Whitespace

It is important to note how Tcl breaks a command into separate
words on whitespaces, quoted (") and bracketed ({ and }) text.
Therefore, a RALF file is sensitive to whitespace. Do not use
whitespace in your code if none is shown in this appendix. When a

 A-5

RALF SyntaxFeedback

whitespace is shown, at least one must be present. For example, the
following syntax is invalid because the { is considered as part of the
field command’s second argument and not a separate token:

This is wrong
field REVISION_ID @2{
 bits 8;
}

This example is valid because a space is required to separate the {
from the preceding Tcl command argument:

This is right
field REVISION_ID @2 {
 bits 8;
}

Trailing Comments

A common mistake occurs when trying to add a trailing comment to
a RALF construct using the following (erroneous) syntax:

register my_reg {
 ...
} # my_reg

Considering that Tcl commands terminate at the end-of-line, the
trailing comment is considered part of the register command. To
have the trailing comment be properly interpreted as a comment, the
previous Tcl command should be explicitly terminated with a
semicolon, as shown in the following (correct) syntax:

A-6

RALF Syntax Feedback

register my_reg {
 ...
}; # my_reg

RALF Construct Summary

• field
• register
• regfile
• memory
• virtual register
• block
• system

field

A field defines an atomic set of consecutive bits. Fields are
concatenated into registers.

Syntax
field name [{
 <properties>
}]

Defines a field with the specified name. If you specify the name
unused or reserved, it specifies unused or reserved bits within a
register and you can specify only the bits property. Unused bits are
assumed to be read-only and have a permanent value of zero. If
another behavior is expected of unused or reserved bits, such as a
different read-back value, you must specify an explicit field for them.

Properties
The following properties can be used to specify the field:

 A-7

RALF SyntaxFeedback

[bits n;]

Specifies the number of bits in the field. If not specified, defaults
to 1. This property can only be specified once.

[access rw|ro|wo|w1|w1c|rc|rs|wrc|wrs|wc|ws|
 wsrc|wcrs|w1s|w1t|w0c|w0s|others...

Specifies the functionality of all the bits in the field when the field
is written or read.

By default, a field is writeable (rw).

A field can be,

rw read/write

ro read-only

wo write-only

w1 write-once

w1c write a 1 to bitwise-clear

rc clear on read

rs Read Sets All

wrc Write Read Clears All

wrs Write, Read Sets All

wc Write Clears All

ws Write Sets All

wsrc Write Sets All, Read Clears All

wcrs Write Clears All, Read Sets All

w1s Write 1 to Set. If the bit in the written value is a '1', then the
corresponding bit in the field is set to 1. Otherwise, the field bit
is not affected.

w1t Write 1 to Toggle. If the bit in the written value is a '1', then the
corresponding bit in the field is inverted. Otherwise, the field bit
is not affected.

A-8

RALF Syntax Feedback

[reset|hard_reset value;]

Specifies the hard reset value for the field. By default, a value of
0 is used.

Supports unknown (x or X) and high-impedance (z or Z) bits in
value. However, such bits are eventually converted to 0 in the RAL
Base Class because the reset value in the RAL Base Class is a
2-state value.

[soft_reset value;]

w0c Write 0 to Clear. If the bit in the written value is a '0', then the
corresponding bit in the field is set to 0.Otherwise, the field bit
is not affected.

w0s Write 0 to Set. If the bit in the written value is a '0', then the
corresponding bit in the field is set to 1. Otherwise, the field bit
is not affected.

w0t Write 0 to Toggle. If the bit in the written value is a '0', then the
corresponding bit in the field is inverted. Otherwise, the field bit
is not affected.

w1src Write 1 to Set, Read Clears All. If the bit in the written value is
a '1', then the corresponding bit in the field is set to 1. Otherwise,
the field bit is not affected.

w1crs Write 1 to Clear, Read Sets All. If the bit in the written value is
a '1', then the corresponding bit in the field is set to 0. Otherwise,
the field bit is not affected.

w0src Write 0 to Set, Read Clears All. If the bit in the written value is
a '0', then the corresponding bit in the field is set to 1. Otherwise,
the field bit is not affected.

w0crs Write 0 to Clear, Read Sets All. If the bit in the written value is
a '0', then the corresponding bit in the field is set to 0. Otherwise,
the field bit is not affected.

woc Write Only Clears All

wos Write Only Sets All

wo1 Write Only, Once. Changed to written value if this is the first write
operation after a hard reset. Otherwise has no effect.

 A-9

RALF SyntaxFeedback

Specifies the soft reset value for the field. By default, a field is not
affected by a soft reset.

Supports unknown (x or X) and high-impedance (z or Z) bits in
value. However, such bits are eventually converted to 0 in the RAL
Base Class because the soft reset value in the RAL Base Class
is a 2-state value.

[<constraint name [{
 <expressions>
}]>]

Specifies constraints on the field value when it is randomized. The
constraints are not interpreted by the generation script and must
be valid SystemVerilog or OpenVera expressions. The identifier
value is used to refer to the value of the field.

If a constraint property is not specified, the field cannot be
randomized. If an unconstrained but random field is required,
simply specify an empty constraint block.

[enum { <name[=val],> }]

Defines symbolic names for field values. If a value is no explicitly
specified for a symbolic name, the value is the value of the
previous name plus one—or zero if it is the first name.

[cover <+|- b|f>

Specifies if the bits in this fields are to be included (+b) in or
excluded (-b) from the register-bit coverage model.

A-10

RALF Syntax Feedback

Specifies if the field value coverage point for this field is an explicit
goal (+f), in which case its weight is equal to the number of
specified or implicit bins. If it is specified as an implicit goal (-f) as
part of a cross-coverage point, its coverage point weight is equal
to zero.

[<coverpoint {
 <bins name [[[n]]] = { <n|[n:n],> } | default>
}>]

Explicitly specifies the bins in the field value coverpoint for this
field. The semantics of the bin specification is identical to the
SystemVerilog coverage bin specification, as defined in the
section named “Defining coverage points” in the 1800-2009
SystemVerilog Language Reference Manual.

Example

Example A-1 1-bit read/write Field
field tx_en;

Example A-2 2-bit Randomizable Field
field PAR {
 bits 2;
 reset 2’b11;
 constraint valid {
 value != 2’b00;
 }
}

Example A-3 Explicitly Specified Coverage Bins
field f2 {
 bits 8;
 enum { AA, BB, CC=15 }
 coverpoint {
 bins AAA = { 0, 12 }
 bins BBB [] = { 1, 2, AA, CC }
 bins CCC [3] = { 14,15, [BB : 10] }

 A-11

RALF SyntaxFeedback

 bins DDD = default
 }
 }

register

A register defines a concatenation of fields. Registers are used in
register files and blocks.

Syntax
register name {
 <properties>
}

Defines a register with the specified name.

Properties
The following properties can be used to specify the register.

[attributes {
 <name> <value>[, ...]
}]

Specifies a value for the specified user-defined attribute. Multiple
attributes may be specified by separating each attribute-value pair
with a comma. If the value contains white spaces, it must be
included between double quotes.

[bytes n;]

Specifies the number of bytes in the register. The total number of
bits in the fields in this register cannot exceed this number of bytes.
If this property is not specified, the width of the register is the
minimum integral number of bytes necessary to implement all
fields contained in the register.

A-12

RALF Syntax Feedback

[left_to_right;]

By default, fields are concatenated starting from the least-
significant bit of the register. If this property is specified, fields are
concatenated starting from the most-significant side of the
register, but justified to the least-significant side. When using a
left-to-right specification style, the first field cannot have a bit offset
specified: the offset of the first field depends on the size of and
spacing between the other fields.

[<field name[=rename][[n]] [(hdl_path)]
[@bit_offset[+incr]];

[<field name [[n]] [(hdl_path)]
[@bit_offset[+incr]] {

 <field properties>
}>]

Defines and instantiates the specified field in this register. The
first form specifies an instance of a previously-defined field
description. The second form defines a new field description and
instantiates it in the register file.

Fields separated by unused or reserved bits can be separated by
specifying a field named unused or reserved of the appropriate
width or by using a bit offset. A bit offset, from the least-significant
bit in the register can be specified. If no bit offset is specified, the
field is located immediately to the left (or right if the
left_to_right property is specified) of the previously
instantiated field. If the numerical index n is specified, an array of
fields is instantiated.

Field array elements are located at consecutive offsets in the
register, starting with field[0], separated by a specified offset
increment. The offset increment is only valid when instantiating a

 A-13

RALF SyntaxFeedback

field array.

Instantiating an array of fields is logically equivalent to explicitly
instantiating all the individual fields. The only difference is that
they are accessible as an array in the generated SystemVerilog
code.

By default, the location of the low-index field is in the LSB (least
significant bit) position. If the left_to_right attribute is
specified for the instantiating register, the low-index field is in the
MSB (most significant bit) position.

A field array is generated into a fixed-sized array of
uvm_ral_field instances in the uvm_ral_reg and
uvm_reg_block class extensions using the same naming
convention as a regular field. The array is populated with individual
uvm_ral_field class instances, one per array element,
appending [%0d] to the field name (where%0d is replaced with
the field index). Each instance is registered with the parent register
abstraction class as if they were individually-specified fields.

Arrays of fields can be interspersed with other arrays of fields or
regular fields, as long as the field themselves do not overlap.

The optional (hdl_path) is the hierarchical reference, within the
register, to the HDL structure implementing the field. If an
(hdl_path) is specified, direct hierarchical access to the field
can be automatically generated by concatenating it with the
(hdl_path) of the enclosing register. The (hdl_path) can be
an expression and it must be enclosed between parentheses.

A-14

RALF Syntax Feedback

By default, the bit offset represents the position of the least-
significant bit of the field with respect to the least-significant bit of
the register. A value of 0 indicates a field starting in the least-
significant bit of the register. If the left_to_right property is
specified, the bit offset is specified as the offset of the most-
significant bit of the field from the most-significant used bit in the
register. The position of the most-significant bit used in the
register, is a function of the size of, and spacing between all
specified fields as fields are always left-justified, even when
specifying a left-to-right order.

You must specify at least one field property.

Any gap in the register before and after fields is assumed to be
made of unused bits that are read-only and have a permanent
value of zero. If another behavior is expected from unused or
reserved bits, an explicit field must be specified for them.

[<constraint name [{
 <expression>
}]>]

Specifies constraints on the value of the fields it contains when it
is randomized. The constraints are not interpreted by the
generation script and must be valid SystemVerilog or OpenVera
expressions. The identifier fieldname.value refers to the
value of a field.

[noise ro|rw|no;]

 A-15

RALF SyntaxFeedback

Specifies if and how this register can be accessed during normal
operations of the design without affecting the configuration or
functional correctness of the device. By default, a register can be
read at any time (ro). If rw is specified, this register can also be
written. If no is specified, this register cannot be accessed in any
way during normal operations. Currently unsupported.

[shared [(hdl_path)];]

Specifies that this register is physically shared by all domains in
a block that instantiates it. This property can only be used in a
stand-alone register specification.

The (hdl_path) specifies the hierarchical access path to the
physical register. It is used instead of the (hdl_path) specified
in the block instantiating it. If an (hdl_path) is specified, direct
hierarchical access to the shared register can be automatically
generated by concatenating it with the (hdl_path) of the
enclosing block. The (hdl_path) must be enclosed in
parentheses.

[cover <+|- a|b|f>

Specifies if the address of this register should be excluded (-a)
from the block’s address map coverage model.

Specifies if the bits in this register are to be included (+b) in or
excluded (-b) from the register-bit coverage model.

Specifies if the fields in this registers should be included (+f) in or
excluded (-f) from the field value coverage model.

cross <cross_item1> <cross_item2> [<cross_item3> …

 <cross_itemN>] [{

A-16

RALF Syntax Feedback

 label <cross_label_name>

 }]

Specifies a cross coverage point of two or more fields or of any
previously defined cross coverage point. To use a previously
defined cross coverage point in another cross coverage
specification, the specification of the former cross coverage point
must have a label, so that it can be referenced in a later cross
coverage specification, if needed by using that label.

<cross_itemN> can be, either a previously defined non-array
field name or a previous defined <cross_label_name>. For field
arrays, <cross_itemN> needs to specify the exact field (array
element) to be used for calculating the cross, using
<fieldarray-name>[<index>] syntax, where <index>
ranges from 0 to field array size - 1.

Example

Example A-4 Attribute specification for a register
register R {
 ...
 attributes {
 NO_RAL_TESTS 1,
 RETAIN 1
 }
}

The following examples are different ways to specify the register
illustrated in Figure A-1.

 A-17

RALF SyntaxFeedback

Figure A-1 Register Specification

Example A-5 Specification for Register in Figure A-1
register CTRL {
 field TXE {}
 field RXE {}
 field PAR {
 bits 2;
 reset 2’b11;
 }
 field DTR @11 {
 access rw;
 }
 field CTS {
 access rw;
 reset 1;
 }
}

Example A-6 Specification for Register in Figure A-1
source Example A-2
register CTRL {
 bytes 2;
 left_to_right;
 field CTS {
 access rw;
 reset 1;
 }
 field DTR {
 access rw;
 }
 field unused {
 bits 7;
 }
 field PAR;
 field RXE {}
 field TXE {}
}

015

TXE

1

RXE

2

PAR

312

CTS

11

DTR UnusedUnusedCTRL

A-18

RALF Syntax Feedback

Example A-7 User-Defined Cross-Coverage Point
register r {

field f1 {...}
field f2 {...}
field f3 {...}

cross f1 f2 {

label xyz;
}
cross xyz f3;

}

regfile

A register file defines a collection of consecutive registers. Register
files are used in blocks.

Syntax
regfile name {
 <properties>
}

Defines a register file with the specified name.

Properties
The following properties can be used to specify the register file.

[<register name[=rename][[n]] [(hdl_path)]
[@offset] [read|write];>]

[<register name[[n]] [(hdl_path)] [@offset] {
 <property>
}]

[<register name[=rename][m:n]] [(hdl_path)]
[@offset] [read|write];>]

 A-19

RALF SyntaxFeedback

[<register name[[m:n]] [(hdl_path)] [@offset] {
 <property>

}]

The first form specifies an instance of a previously-defined register
description. The second form defines a new register description
and instantiates it in the register file. An inlined register description
cannot contain the shared property. Access to a shared register
can be further restricted to read or write in a particular instance.

A register may be instantiated at an explicit address offset within
the register file. If not specified, the register is instantiated at the
next available address, starting with 0. The number of addresses
occupied by a register depends on the width of the register and
the endian property of the block defining the register file. If a
register is not mapped in the address space of the block, the offset
may be specified as @none to indicate that the register does not
consume any address locations.

If a numerical index is specified, an array of registers is
instantiated. Register arrays are located at consecutive address
offsets. Register array declared using notation [n] starts from
address 0 and have word addresses from 0 to n-1. Instantiating
an array of register is logically equivalent to explicitly instantiating
all of the individual registers explicitly. The only difference is that
they are accessible as an array in the generated SystemVerilog
or OpenVera code.

A-20

RALF Syntax Feedback

The optional (hdl_path) is the hierarchical reference, within the
block, to the HDL structure implementing the register. If an
(hdl_path) is specified, direct hierarchical access to the register
can be automatically generated by concatenating it with the
(hdl_path) of the enclosing system and any HDL expression
specified in the register. The (hdl_path) can be an expression
and it must be enclosed between parentheses. (hdl_path) can
be a simple name or a Verilog port like expressions for associating
to fields, as shown in the following example:

register reg=reg_inst (.fld1(reg.fld1),
.fld2(reg.fld2), ….);

The (hdl_path) for a register array must include a %d
placeholder that is replaced with the decimal index of the register
in the array.

If more than one register with the same name is instantiated in
the same register file, it must be renamed to a unique name within
the register file.

You must specify at least one register property.

[<constraint name [{
 <expression>
}]>]

Specifies constraints on the value of the registers and fields it
contains when it is randomized. The constraints are not
interpreted by the generation script and must be valid
SystemVerilog or OpenVera expressions.

[shared [(hdl_path)];]

 A-21

RALF SyntaxFeedback

Specifies that this register file is physically shared by all domains
in a block that instantiates it. This property can only be used in a
stand-alone register file specification.

The (hdl_path) specifies the hierarchical access path to the
shared register file. For shared register files, this (hdl_path) is
used, instead of the (hdl_path) specified, if any, while
instantiating the register file in a block. If an (hdl_path) is
specified, direct hierarchical access to the shared register file can
be automatically generated by concatenating it with the
(hdl_path) of the enclosing block. The (hdl_path) must be
enclosed in parentheses.

All the registers instantiated inside a shared register file must also
be shared.

[cover <+|- a|b|f>

Specifies if the registers in this register file are to be included (+)
in or excluded (-) from the address map (a), register bits (b) or
field value (f) coverage model.

[doc {
 <text>
}]

Specifies user documentation for the register file, using HTML
formatting tags. Currently unsupported.

A-22

RALF Syntax Feedback

Example
The primary purpose of register files is to define arrays of groups of
registers. For example, the register group illustrated in Figure A-2 is
used to configure a DMA channel. The block RALF specification
shown in Example A-8 illustrates how a 16-channel DMA controller
might be described.

Figure A-2 DMC Channel Configuration Registers Specification

Example A-8 Specification for Multi-Channel DMA Controller
block dma_ctrl {
 regfile chan[16] {
 register src {
 bytes 2;
 field addr {
 bits 16;
 }
 }
 register dst {
 bytes 2;
 field addr {
 bits 16;
 }
 }
 register count {
 bytes 2;
 field n_bytes {
 bits 16;
 }
 }
 register ctrl {
 bytes 2;
 field TXE {

015

TXE

1

BSY

212

DN UnusedStatus

Word Count

Destination Address

Source Address

 A-23

RALF SyntaxFeedback

 bits 1;
 access rw;
 }
 field BSY {
 bits 1;
 access ro;
 }
 field DN @12 {
 bits 1;
 access ro;
 }
 field status {
 bits 3;
 access ro;
 }
 }
 }
}

memory

A memory defines a region of consecutively addressable locations.
Memories are used in blocks.

Syntax
memory name {
 <property>
}

Defines a memory with the specified name.

Properties
The following properties can be used to specify the memory.

[attributes {
 <name> <value>[, ...]
}]

A-24

RALF Syntax Feedback

Specifies a value for the specified user-defined attribute. Multiple
attributes may be specified by separating each attribute-value pair
with a comma. If the value contains white spaces, it must be
included between double quotes.

size m[k|M|G];

Specifies the number of consecutive addresses in the memory
where each location has the number of bits specified by the bits
property. The size may also include a unit. In that case, the
specified size is multiplied by:

• 1024 (k)
• 2^20 (M)
• 2^30 (G)

This property is required.

bits n;

Specifies the number of bits in each memory location. The total
number of bits in the memory is the specified number of bits
multiplied by the specified size. This property is required.

[access rw|ro;]

Specifies if the memory is a RAM (rw) or a ROM (ro). By default,
a memory is a RAM.

[initial x|0|1|addr|literal[++|--];]

Specifies the initial content of the memory is to be filled with
unknowns (x), filled with zeros (0), filled with ones (1), set to the
physical address value (addr), or set to a constant (literal),
incrementing (literal++) or decrementing (literal--) literal
value.

 A-25

RALF SyntaxFeedback

The content of the memory is initialized to the specified pattern
when the uvm_ral_mem::initialize() method in its
abstraction class is invoked. By default, a memory is initialized
with unknowns (x).

Initialization requires that backdoor access to the memory content
be available.

[shared [(hdl_path)];]

Specifies that this memory is physically shared by all domains in
a block that instantiates it. Can only be used in a standalone
memory specification.

The optional (hdl_path) specifies the hierarchical access path
to the physical memory. It is used in lieu of the (hdl_path)
specified in the block instantiating it. If an (hdl_path) is
specified, direct hierarchical access to the shared memory can
be automatically generated by concatenating it with the
(hdl_path) of the enclosing block. The (hdl_path) must be
enclosed between parentheses.

[cover <+|- a>

Specifies if this memory is to be included (+a) in or excluded (-a)
from the address map coverage model.

Example

Example A-9 64 KB RAM
memory dma_bfr {
 bits 8;
 size 64k;
}

A-26

RALF Syntax Feedback

Example A-10 2 KB ROM
memory tx_bfr {
 bits 16;
 size 1024;
 access ro;
 initial 0++;
}

virtual register

A virtual register defines a concatenation of virtual fields.
Virtual registers are used in blocks.

Syntax
virtual register name {
 <properties>
}

Defines a virtual register with the specified name.

Properties
The following properties can be used to specify the virtual register.

[bytes n;]

Specifies the number of bytes in the register. The total number of
bits in the fields in this register cannot exceed this number of bytes.
The actual number of memory locations used by the virtual
register is the minimum integral number of memory locations
required to provide the specified number of bytes. If this property
is not specified, the width of the register is the minimum integral
number of memory locations necessary to implement all fields
contained in the register.

[left_to_right;]

 A-27

RALF SyntaxFeedback

By default, fields are concatenated starting from the least-
significant bit of the register. If this property is specified, fields are
concatenated starting from the most-significant side of the register
but justified to the least-significant side. When using a left-to-right
specification style, the first field cannot have a bit offset specified:
the offset of the first field depends on the size of, and spacing
between, the other fields.

[<field name[=rename] [@bit_offset];

[<field name [@bit_offset] {
 bits n;
 [doc {
 <text>
 }]
}>]

Defines and instantiates the specified virtual field with the
specified number of bits in this virtual register. The first form
specifies an instance of a previously-defined field description
where only the bits property is considered (all other properties
are ignored). The second form defines a new field description and
instantiates it in the register file.

Refer to the specification of the field property in the “register”
construct for more details on how they are physically laid out.

At least one field property must be specified.

All bits in a virtual register, including unused and reserved bits
have their access modes defined by the access mode of the
underlying memory used to implement it and the domain used to
access them.

A-28

RALF Syntax Feedback

block

A block defines a set of registers and memories. Registers are
concatenated into blocks. A block can have more than one physical
interface. Registers and memories can be shared across physical
interfaces within a block.

Syntax
block name {
 <property>
}

Specifies a design block with the specified name and a single
physical interface.

block name {
 domain name {
 <property>
 }
 <domain name {
 <property>
 }>
 [doc { <text> }]
}

Specifies a design block with the specified name and multiple
physical interfaces. The name of each domain specifies the name of
the corresponding physical interface. At least two domains must be
specified. This form of the block specification can have a doc
property outside of the domain specification.

The name of the block is used to generate block-specific unique
identifiers.

Properties
The following properties can be used to specify the block and its
domains.

 A-29

RALF SyntaxFeedback

[attributes {
 <name> <value>[, ...]
}]

Specifies a value for the specified user-defined attribute. Multiple
attributes may be specified by separating each attribute-value pair
with a comma. If the value contains white spaces, it must be
included between double quotes.

bytes n;

Specifies the number of bytes that can be accessed concurrently
and uniquely addressed through the physical interface. This
property is required.

[endian little|big|fifo_ls|fifo_ms;]

Specifies how wider registers and memories are mapped onto
multiple accesses over the physical interface. See “Hierarchical
Descriptions and Composition” for a description of the various
mapping modes. By default, little endian is used.

[<register name[=rename][[n]] [(hdl_path)]
[@offset] [read|write];>]

[<register name[[n]] [(hdl_path)] [@offset] {
 <property>
}]

[<register name[=rename][m:n]] [(hdl_path)]
[@offset] [read|write];>]

[<register name[[m:n]] [(hdl_path)] [@offset] {
 <property>

}]

A-30

RALF Syntax Feedback

The first form specifies an instance of a previously-defined register
description. The second form defines a new register description
and instantiates it in the block. An inlined register description
cannot contain the shared property. Access to a shared register
can be further restricted to read or write in a particular instance.

A register may be instantiated at an explicit address offset within
the block. If not specified, the register is instantiated at the next
available address, starting with 0. The number of addresses
occupied by a register depends on the width of the register and
the endian property of the block. If a register is not mapped in the
address space of the block the offset may be specified as @none
to indicate that the register does not consume any address
locations.

If a numerical index is specified, an array of register is instantiated.
Register arrays are located at consecutive address offsets.
Register array declared using notation [n] starts from address 0
and have word addresses from 0 to n-1. If an increment value is
specified, the offset of each register in the register array is
incremented by the specified increment. Instantiating an array of
register is logically equivalent to explicitly instantiating all of the
individual registers explicitly. The only difference is that they are
accessible as an array in the generated SystemVerilog or
OpenVera code.

 A-31

RALF SyntaxFeedback

The optional (hdl_path) is the hierarchical reference, within the
block, to the HDL structure implementing the register. If an
(hdl_path) is specified, direct hierarchical access to the register
is automatically generated by concatenating it with the
(hdl_path) of the enclosing system and any (hdl_path)
expression specified in the register. The (hdl_path) can be an
expression and it must be enclosed between parentheses.
(hdl_path) can be a simple name or a Verilog port like
expressions for associating to fields as shown in the following
example:

register reg=reg_inst (.fld1(reg.fld1),
.fld2(reg.fld2), ….);

The (hdl_path) for a register array must include a "%d"
placeholder that is replaced with the decimal index of the register
in the array.

If more than one register with the same name is instantiated in
the same block, it must be renamed to a unique name within the
block.

You must specify at least one register or memory property.

Registers must have unique addresses, therefore, it is not
possible to describe a block containing a read-only register and
a write-only register sharing the same physical address. If it is not
possible to avoid this implementation structure, specify a single
register with a field of other bits.

[<regfile name[=rename][[n]] [(hdl_path)] [@offset]
[+incr] [read|write];>]

A-32

RALF Syntax Feedback

[<regfile name[[n]] [(hdl_path)] [@offset] [+incr]
{
 <property>
}]

The first form specifies an instance of a previously-defined register
file description. The second form defines a new register file
description and instantiates it in the block. An inlined register file
description cannot contain the shared property. Access to a
shared register file can be further restricted to read or write in a
particular instance, which essentially applies this restriction to all
shared registers contained inside that shared register file.

If a numerical index is specified, an array of register files is
instantiated. Register file arrays are located at consecutive
address offsets, starting with register [0], separated by the
specified offset increment. The offset increment is required and
only valid when instantiating a regfile array. Instantiating an
array of register files is logically equivalent to explicitly
instantiating all of the individual register files explicitly. The only
difference is that they are accessible as an array in the generated
SystemVerilog or OpenVera code.

Register files are usually used to specify arrays of register groups.
Arrays of register files yield a different address map than register
arrays. See “Arrays and Register Files” for more details.

 A-33

RALF SyntaxFeedback

The optional (hdl_path) is the hierarchical reference, within the
block, to the HDL structure implementing the register file. Direct
hierarchical access to the register file can be automatically
generated by concatenating the specified (hdl_path) with the
(hdl_path) of the enclosing system and the (hdl_path)
specified in the registers. The (hdl_path) must be enclosed
between parentheses. The (hdl_path) for a register file array
must include a "%d" placeholder that is replaced with the decimal
index of the register file in the array.

[<memory name[=rename] [(hdl_path)] [@offset]
 [read|write];>]

[<memory name [(hdl_path)] [@offset] {
 <property>
}>]

The first form specifies an instance of a previously-defined
memory description. The second form defines a new memory
description and instantiates it in the block. An inlined memory
description cannot contain the shared property. The access to a
shared memory can be further restricted to read or write in a
particular instance.

A memory may be instantiated at an explicit address offset within
the block. If not specified, the memory is instantiated at the next
available address, starting with 0. The number of addresses
occupied by a memory depends on the size and width of the
memory, and the endian property of the block. If a memory is not
mapped in the address space of the block, the offset may be
specified as @none to indicate that the memory does not consume
any address locations.

A-34

RALF Syntax Feedback

The optional (hdl_path) is the hierarchical reference, within the
block, to the HDL structure implementing the memory. If an
(hdl_path) is specified, direct hierarchical access to the
memory can be automatically generated by concatenating it with
the (hdl_path) of the enclosing system. The (hdl_path) must
be enclosed between parentheses.

If more than one memory with the same name is instantiated in
the same block, it must be renamed to a unique name within the
block.

At least one register or memory property must be specified.

[<virtual register name [=rename[n] mem@offset
[+incr]];>]

[<virtual register name[[n] mem@offset [+incr]] {
 <property>
}]

The first form instantiates an array of a previously-defined virtual
register description in the block. The second form instantiates an
array of a new virtual register description.

If a memory association is specified, the array of virtual register
is statically implemented in the specified memory starting at the
specified offset. If an increment value is specified, the
implementation offset of each virtual register in the virtual register
array is incremented by the specified increment. If a memory
association is not specified, the virtual register is still instantiated
in the block but must be dynamically associated with an
implementation memory using the "uvm_reg_vreg::implement()”
or "uvm_reg_vreg::allocate()” method before it can be used.

 A-35

RALF SyntaxFeedback

If more than one array of virtual registers with the same name is
associated in the same block, it must be renamed to a unique
name within the memory.

Because virtual registers are implemented in memory, it is
possible to describe overlapping virtual register arrays.

[<constraint name [{
 <expression>
}]>]

Specifies constraints used when the content of the registers in the
block is randomized. The constraints are not interpreted by the
generation script and must be valid SystemVerilog or OpenVera
expressions. Constraints at this level should specify cross-
register constraints.

Constraints cannot be used to constrain the content of memories
or virtual registers.

[cover <+|- a|b|f>

Specifies if the registers and memories in this block are to be
included (+) in or excluded (-) from the address map (a), register
bits (b) or field value (f) coverage model. If specified inside a
"domain", applies to that domain only.

[doc {
 <text>
}]

Specifies user documentation for the block or domain, using
HTML formatting tags.

A-36

RALF Syntax Feedback

Example

Example A-11 Block With Single Physical Interface
source Example A-6
source Example A-10
block uart {
 bytes 1;
 endian little;
 register CTRL;
 memory tx_bfr @’h00100;
}

Example A-12 Block With Register Array
block multi_chan {
 bytes 1;
 endian little;
 register CHAN_CTRL[32] @’h0200 {
 bytes 2;
 ...
 };
}

Example A-13 Block With Two Physical Interfaces
register data_xfer {
 bytes 4;
 field data {
 bits 32;
 }
 shared;
}
register flags {
 field cts {
 access rw;
 reset 1;
 }
 field dtr {
 access rw;
 }
}
block bridge {
 domain pci {
 bytes 4;
 register flags=pci_flags;
 register data_xfer=to_ahb write;

 A-37

RALF SyntaxFeedback

 register data_xfer=frm_ahb read;
 }
 domain ahb {
 bytes 4;
 register flags=ahb_flags;
 register data_xfer=to_pci write;
 register data_xfer=frm_pci read;
 }
}

[<block name[[.domain]=rename][[n]] [(hdl_path)]
 @offset [+incr];>]

[<block name[[n]] [(hdl_path)] @offset [+incr] {
 <property>
}]

The first form specifies an instance of a previously-defined sub-
block description. The second form defines a new sub-block
description and instantiates it in the block.

A sub-block must be instantiated at an explicit address offset
within the block. If the base address of the sub-block is
programmable, specify the default (after reset) base address.

If a numerical index is specified, an array of sub-blocks is
instantiated. Sub-block arrays are located at consecutive address
offsets, starting with sub-block[0], separated by the specified
offset increment. The offset increment is required and only valid
when instantiating a sub-block array. Instantiating an array of sub-
blocks is logically equivalent to explicitly instantiating all of the
individual sub-blocks explicitly. The only difference is that they are
accessible as an array in the generated SystemVerilog or
OpenVera code.

A-38

RALF Syntax Feedback

The optional (hdl_path) is the hierarchical reference, within the
block, to the HDL structure implementing the sub-block. Direct
hierarchical access to the registers and memories in the sub-block
can be automatically generated by concatenating the specified
(hdl_path) with the (hdl_path) of any enclosing block and
the (hdl_path) to the registers and memories within the sub-
block. The (hdl_path) must be enclosed between parentheses.
The (hdl_path) for a sub-block array must include a "%d"
placeholder that is replaced with the decimal index of the sub-
block in the array.

If more than one sub-block with the same name is instantiated in
the same block, it must be renamed to a unique name within the
block. A reference to a domain within a sub-block uses a
composite name and must be renamed to a single name that is
a valid SystemVerilog or OpenVera user-defined identifier.

system

A system defines a design composed of blocks or subsystems. A
system can be used to create larger systems.

Syntax
system name {
 <property>
}

Specifies a system with the specified name and a single physical
interface.

system name {
 domain name {
 <property>
 }
 <domain name {
 <property>

 A-39

RALF SyntaxFeedback

 }>
 [doc { <text> }]
}

Specifies a system with the specified name and multiple physical
interfaces. The name of each domain specifies the name of the
corresponding physical interface. At least two domains must be
specified. This form of the system specification can have a doc
property outside of the domain specification.

The name of the system is used to generate system-specific unique
identifiers.

Properties
The following properties can be used to specify the system and its
domains.

[attributes {
 <name> <value>[, ...]
}]

Specifies a value for the specified user-defined attribute. Multiple
attributes may be specified by separating each attribute-value pair
with a comma. If the value contains white spaces, it must be
included between double quotes.

bytes n;

Specifies the number of bytes that can be accessed concurrently
and uniquely addressed through the physical interface. This
property is required.

[endian little|big|fifo_ls|fifo_ms;]

A-40

RALF Syntax Feedback

Specifies how wider blocks and subsystems are mapped onto
multiple accesses over the physical interface. See “Hierarchical
Descriptions and Composition” for a description of the various
mapping modes. By default, little endian is used.

[<block name[[.domain]=rename][[n]] [(hdl_path)]
 @offset [+incr];>]

[<block name[[n]] [(hdl_path)] @offset [+incr] {
 <property>
}]

The first form specifies an instance of a previously-defined block
description. The second form defines a new block description and
instantiates it in the system.

A block must be instantiated at an explicit address offset within
the system. If the base address of the block is programmable,
specify the default (after reset) base address.

If a numerical index is specified, an array of blocks is instantiated.
Block arrays are located at consecutive address offsets, starting
with block[0], separated by the specified offset increment. The
offset increment is required and only valid when instantiating a
block array. Instantiating an array of blocks is logically equivalent
to explicitly instantiating all of the individual blocks explicitly. The
only difference is that they are accessible as an array in the
generated SystemVerilog or OpenVera code.

 A-41

RALF SyntaxFeedback

The optional (hdl_path) is the hierarchical reference, within the
system, to the HDL structure implementing the block. Direct
hierarchical access to the registers and memories in the block can
be automatically generated by concatenating the specified
(hdl_path) with the (hdl_path) of any enclosing system and
the (hdl_path) to the registers and memories within the block.
The (hdl_path) must be enclosed between parentheses. The
(hdl_path) for a block array must include a "%d" placeholder
that is replaced with the decimal index of the block in the array.

If more than one block with the same name is instantiated in the
same system, it must be renamed to a unique name within the
system. A reference to a domain within a block uses a composite
name and must be renamed to a single name that is a valid
SystemVerilog or OpenVera user-defined identifier.

At least one block or system property must be specified.

[<system name[[.domain]=rename][[n]] [(hdl_path)]
 @offset [+incr];>]

[<system name[[n]] [(hdl_path)] @offset [+incr] {
 <property>
}]

The first form specifies an instance of a previously-defined
subsystem description. The second form defines a new
subsystem description and instantiates it in the system.

A subsystem must be instantiated at an explicit address offset
within the system. If the base address of the subsystem is
programmable, specify the default (after reset) base address.

A-42

RALF Syntax Feedback

If a numerical index is specified, an array of subsystems is
instantiated. Subsystem arrays are located at consecutive
address offsets, starting with subsys[0], separated by the
specified offset increment. The offset increment is required and
only valid when instantiating a subsystem array. Instantiating an
array of subsystems is logically equivalent to explicitly
instantiating all of the individual subsystems explicitly. The only
difference is that they are accessible as an array in the generated
SystemVerilog or OpenVera code.

The optional (hdl_path) is the hierarchical reference, within the
system, to the HDL structure implementing the subsystem. Direct
hierarchical access to the registers and memories in the
subsystem can be automatically generated by concatenating the
specified (hdl_path) with the (hdl_path) of any enclosing
system and the (hdl_path) to the registers and memories within
the subsystem. The (hdl_path) must be enclosed between
parentheses. The (hdl_path) for a subsystem array must
include a "%d" placeholder that is replaced with the decimal index
of the subsystem in the array.

If more than one subsystem with the same name is instantiated
in the same system, it must be renamed to a unique name within
the system. A reference to a domain within a subsystem uses a
composite name and must be renamed to a single name that is
a valid SystemVerilog or Openvera user-defined identifier.

At least one block or system property must be specified.

[<constraint name [{
 <expression>
}]>]

 A-43

RALF SyntaxFeedback

Specifies constraints used when the content of the registers and
memories in the system is randomized. The constraints are not
interpreted by the generation script and must be valid
SystemVerilog or OpenVera expressions. Constraints at this level
should specify cross-register constraints.

[cover <+|- a|b|f>

Specifies if the registers and memories in this block are to be
included (+) in or excluded (-) from the address map (a), register
bits (b) or field value (f) coverage model. If specified inside a
"domain", applies to that domain only.

[doc {
 <text>
}]

Specifies user documentation for the system or domain, using
HTML formatting tags. Currently unsupported.

Example

Example A-14 System With Single Physical Interface
source Example A-11
system SoC {
 bytes 1;
 endian little;
 block uart[2] @’hF0000 +’h01000;
}

Example A-15 System With Two Physical Interfaces
source Example A-11
source Example A-13
system SoC {
 domain ahb {
 bytes 4;
 block uart[2] @’hF0000 +’h01000;
 block bridge.ahb=br @0;

A-44

RALF Syntax Feedback

 }
 domain pci {
 bytes 4;
 block bridge.pci=br @0;
 }
}

 B-1

Limitations in Code Generation for UVM Register ModelFeedback

B
Limitations in Code Generation for UVM
Register Model A

Fields

Volatility

The uvm_reg_field::configure() method takes an
argument bit volatile, which can be specified from the RALF
as shown below.

block controller @100 {

 bytes 2;

 register status @1 {
 field value {
 bits 16;

B-2

Limitations in Code Generation for UVM Register Model Feedback

 volatile 1;
 access wrc;
 }
 }
}

If unspecified, a default of 0 is assumed.

has_reset

The uvm_reg_field::configure() method has another
argument bit has_reset. The generated UVM_REG MODEL has
“1” assigned to this argument whenever hard reset value is set by
the user in RALF description, else this argument is assigned with
value “0”.

individually_accessible

RALF Specification cannot specify if the field is individually
accessible or not.

soft_reset

The current ralgen neglects this option provided by the RALF
Specification. However, there is the set_reset() method in the
UVM_REG model that updates the value provided by the
soft_reset field from RALF Specification.

set_compare()

The set_compare() method helps you to disable the checks
done on certain fields; the RALF Specification lacks this feature.

 B-3

Limitations in Code Generation for UVM Register ModelFeedback

Memories

Coverage

The ralgen command generates no covergroups for memories.

Registers

UVM_REG_FIFOs

This special register models a DUT FIFO accessed through write/
read, where writes push to the FIFO and reads pop from it.
However, the RALF specification lacks features supporting the
usage of uvm_reg_fifo.

REGISTER CALLBACKS

REG_MODEL generated by the ralgen command lacks Callback
Register Macro "`uvm_register_cb",
"`uvm_set_super_type", and so on.

B-4

Limitations in Code Generation for UVM Register Model Feedback

	Contents
	Code Generation
	Generating a RAL Model
	Options
	Embedding enum in Field Classes
	Splitting the Model Into Separate Files
	Command-Line Option
	Specification
	Example

	Splitting the Model into Separate Packages
	Command-Line Option
	Specification
	Example

	Generating the Model for Top-Level Block Only
	Command-Line Option
	Specification
	Example

	Prunable Register Model
	Command-Line Option
	Specification
	Example

	Understanding the Generated Model
	Fields
	Registers
	Arrays
	Register Files
	Virtual Registers
	Memories
	Blocks
	Arrays

	Systems

	Inserting the User-Defined Code Inside the Generated RAL Model Classes
	Arrays

	Specifying Map Name in Single Domain Blocks
	Example

	Register and Memory Specification
	Systems, Blocks, Registers, and Fields
	Reusability and Composition
	Naming
	Hierarchical Descriptions and Composition
	Arrays and Register Files
	Support for Storing and Retrieving User-Defined Property Values
	Example

	Support for Different Reset Values in Register Arrays for RALF
	Example

	Virtual Fields and Virtual Registers
	Multiple Physical Interfaces
	Special Registers
	Indirect Indexed Registers
	Limitations

	Unimplemented Registers
	Aliased Registers
	RALF Extensions
	Limitations

	Banked Registers
	Shared Registers
	Sparse Register Arrays
	Use Model
	Limitations

	Modeling Non-Standard Behavior of Registers
	Accessing Registers Based on Index in a regfile

	Generated Back-Doors
	Arrays
	%d Format Specifier
	[%d] Format Specifier
	[%d:%d] Format Specifier
	[%g] Format Specifier

	Backdoor Support for VHDL or Mixed Language Designs
	Scoping Backdoor Classes to a SV Package
	Target Structures
	Support for Value Inversion in Backdoor Code
	Support for Field Association With Register Backdoor Specification
	Support for Register Array Index in Field Paths
	Support for Active Monitoring Logic
	Reserved RALF Keywords in Backdoor Path

	Functional Coverage Model
	Predefined Functional Coverage Models
	Register Bits
	Address Map
	Field Values
	User-Defined Field Value Coverage Bins
	Specifying Wildcard in Coverpoint Specification
	User-Defined Cross Coverage Specification

	RALF Cover Attribute

	Randomizing Field Values
	Generating RALF and UVM Register Model from IP-XACT
	Definition of IP-XACT Schema
	RALF File Description Mechanism
	Supported IP-XACT Schema
	Generic RALF Features and IP-XACT Mapping
	Constraints
	minimum, maximum
	useEnumeratedValues
	writeAsRead

	Access Types
	Reserved and Parameters Attributes
	Reset/Mask for Register
	Resetting the Values of the Field Using <ipxact:resets>

	Volatile Construct

	Vendor Extensions
	Reset Values
	HDL Paths
	Exclusion from Pre-Defined Tests
	Non-Zero Start Array Index
	User-Defined Array Address Stride
	Attributes
	User Code
	Register CallBack Class
	Adding Register Callback
	Adding Register Callbacks to Fields
	Example
	Specifying External Callback Class With add_reg_cb
	Example

	Limitations of IP-XACT to RALF Feature Mapping

	UVM Register C++ Interface
	C++ Register Model
	Instantiating the Register Model
	Retrieving IDs of All the Registers in a Block/System
	Co-Simulation Execution Timeline

	RALF Syntax
	Grammar Notation
	Reserved Words

	Useful Tcl Commands
	Tcl Syntax and FAQ
	Whitespace
	Trailing Comments

	RALF Construct Summary
	field
	register
	regfile
	memory
	virtual register
	block
	system

	Limitations in Code Generation for UVM Register Model
	Fields
	Volatility
	has_reset
	individually_accessible
	soft_reset
	set_compare()

	Memories
	Coverage

	Registers
	UVM_REG_FIFOs
	REGISTER CALLBACKS

